Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200342658> ?p ?o ?g. }
- W4200342658 endingPage "544" @default.
- W4200342658 startingPage "534" @default.
- W4200342658 abstract "Due to the highly variable clinical phenotype, Klinefelter Syndrome is underdiagnosed.Assessment of supervised machine learning based prediction models for identification of Klinefelter Syndrome among azoospermic patients, and comparison to expert clinical evaluation.Retrospective patient data (karyotype, age, height, weight, testis volume, follicle-stimulating hormone, luteinizing hormone, testosterone, estradiol, prolactin, semen pH and semen volume) collected between January 2005 and June 2019 were retrieved from a patient data bank of a University Centre. Models were trained, validated and benchmarked based on different supervised machine learning algorithms. Models were then tested on an independent, prospectively acquired set of patient data (between July 2019 and July 2020). Benchmarking against physicians was performed in addition.Based on average performance, support vector machines and CatBoost were particularly well-suited models, with 100% sensitivity and >93% specificity on the test dataset. Compared to a group of 18 expert clinicians, the machine learning models had significantly better median sensitivity (100% vs. 87.5%, p = 0.0455) and fared comparably with regards to specificity (90% vs. 89.9%, p = 0.4795), thereby possibly improving diagnosis rate. A Klinefelter Syndrome Score Calculator based on the prediction models is available on http://klinefelter-score-calculator.uni-muenster.de.Differentiating Klinefelter Syndrome patients from azoospermic patients with normal karyotype (46,XY) is a problem that can be solved with supervised machine learning techniques, improving patient care.Machine learning could improve the diagnostic rate of Klinefelter Syndrome among azoospermic patients, even more for less-experienced physicians." @default.
- W4200342658 created "2021-12-31" @default.
- W4200342658 creator A5002071945 @default.
- W4200342658 creator A5012490249 @default.
- W4200342658 creator A5016937929 @default.
- W4200342658 creator A5017257057 @default.
- W4200342658 creator A5022099945 @default.
- W4200342658 creator A5033176798 @default.
- W4200342658 creator A5048402117 @default.
- W4200342658 creator A5055275116 @default.
- W4200342658 creator A5061585561 @default.
- W4200342658 creator A5078039557 @default.
- W4200342658 date "2022-01-10" @default.
- W4200342658 modified "2023-10-18" @default.
- W4200342658 title "Machine learning based prediction models in male reproductive health: Development of a proof‐of‐concept model for Klinefelter Syndrome in azoospermic patients" @default.
- W4200342658 cites W1700338946 @default.
- W4200342658 cites W1741982307 @default.
- W4200342658 cites W1969717780 @default.
- W4200342658 cites W1985398262 @default.
- W4200342658 cites W2077833546 @default.
- W4200342658 cites W2083018088 @default.
- W4200342658 cites W2094288098 @default.
- W4200342658 cites W2102218657 @default.
- W4200342658 cites W2122617439 @default.
- W4200342658 cites W2127555926 @default.
- W4200342658 cites W2177870565 @default.
- W4200342658 cites W2469446652 @default.
- W4200342658 cites W2487770199 @default.
- W4200342658 cites W2522229769 @default.
- W4200342658 cites W2592538491 @default.
- W4200342658 cites W2593037092 @default.
- W4200342658 cites W2786926491 @default.
- W4200342658 cites W2913728364 @default.
- W4200342658 cites W2914560369 @default.
- W4200342658 cites W2914791064 @default.
- W4200342658 cites W2914896381 @default.
- W4200342658 cites W2955463555 @default.
- W4200342658 cites W2964549232 @default.
- W4200342658 cites W2982566060 @default.
- W4200342658 cites W3024117089 @default.
- W4200342658 cites W3026492982 @default.
- W4200342658 cites W3087044403 @default.
- W4200342658 cites W4239510810 @default.
- W4200342658 cites W4244895750 @default.
- W4200342658 cites W4252155252 @default.
- W4200342658 cites W4254154045 @default.
- W4200342658 doi "https://doi.org/10.1111/andr.13141" @default.
- W4200342658 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34914193" @default.
- W4200342658 hasPublicationYear "2022" @default.
- W4200342658 type Work @default.
- W4200342658 citedByCount "5" @default.
- W4200342658 countsByYear W42003426582021 @default.
- W4200342658 countsByYear W42003426582022 @default.
- W4200342658 countsByYear W42003426582023 @default.
- W4200342658 crossrefType "journal-article" @default.
- W4200342658 hasAuthorship W4200342658A5002071945 @default.
- W4200342658 hasAuthorship W4200342658A5012490249 @default.
- W4200342658 hasAuthorship W4200342658A5016937929 @default.
- W4200342658 hasAuthorship W4200342658A5017257057 @default.
- W4200342658 hasAuthorship W4200342658A5022099945 @default.
- W4200342658 hasAuthorship W4200342658A5033176798 @default.
- W4200342658 hasAuthorship W4200342658A5048402117 @default.
- W4200342658 hasAuthorship W4200342658A5055275116 @default.
- W4200342658 hasAuthorship W4200342658A5061585561 @default.
- W4200342658 hasAuthorship W4200342658A5078039557 @default.
- W4200342658 hasBestOaLocation W42003426582 @default.
- W4200342658 hasConcept C119857082 @default.
- W4200342658 hasConcept C126322002 @default.
- W4200342658 hasConcept C154945302 @default.
- W4200342658 hasConcept C2776314099 @default.
- W4200342658 hasConcept C2777420699 @default.
- W4200342658 hasConcept C2777688143 @default.
- W4200342658 hasConcept C2777691561 @default.
- W4200342658 hasConcept C2778575703 @default.
- W4200342658 hasConcept C2779234561 @default.
- W4200342658 hasConcept C29456083 @default.
- W4200342658 hasConcept C41008148 @default.
- W4200342658 hasConcept C54355233 @default.
- W4200342658 hasConcept C71315377 @default.
- W4200342658 hasConcept C71924100 @default.
- W4200342658 hasConcept C86803240 @default.
- W4200342658 hasConceptScore W4200342658C119857082 @default.
- W4200342658 hasConceptScore W4200342658C126322002 @default.
- W4200342658 hasConceptScore W4200342658C154945302 @default.
- W4200342658 hasConceptScore W4200342658C2776314099 @default.
- W4200342658 hasConceptScore W4200342658C2777420699 @default.
- W4200342658 hasConceptScore W4200342658C2777688143 @default.
- W4200342658 hasConceptScore W4200342658C2777691561 @default.
- W4200342658 hasConceptScore W4200342658C2778575703 @default.
- W4200342658 hasConceptScore W4200342658C2779234561 @default.
- W4200342658 hasConceptScore W4200342658C29456083 @default.
- W4200342658 hasConceptScore W4200342658C41008148 @default.
- W4200342658 hasConceptScore W4200342658C54355233 @default.
- W4200342658 hasConceptScore W4200342658C71315377 @default.
- W4200342658 hasConceptScore W4200342658C71924100 @default.
- W4200342658 hasConceptScore W4200342658C86803240 @default.
- W4200342658 hasIssue "3" @default.
- W4200342658 hasLocation W42003426581 @default.