Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200351738> ?p ?o ?g. }
- W4200351738 abstract "Abstract Prandtl–Eyring hybrid nanofluid (P-EHNF) heat transfer and entropy generation were studied in this article. A slippery heated surface is used to test the flow and thermal transport properties of P-EHNF nanofluid. This investigation will also examine the effects of nano solid tubes morphologies, porosity materials, Cattaneo–Christov heat flow, and radiative flux. Predominant flow equations are written as partial differential equations (PDE). To find the solution, the PDEs were transformed into ordinary differential equations (ODEs), then the Keller box numerical approach was used to solve the ODEs. Single-walled carbon nanotubes (SWCNT) and multi-walled carbon nanotubes (MWCNT) using Engine Oil (EO) as a base fluid are studied in this work. The flow, temperature, drag force, Nusselt amount, and entropy measurement visually show significant findings for various variables. Notably, the comparison of P-EHNF's (MWCNT-SWCNT/EO) heat transfer rate with conventional nanofluid (SWCNT-EO) results in ever more significant upsurges. Spherical-shaped nano solid particles have the highest heat transport, whereas lamina-shaped nano solid particles exhibit the lowest heat transport. The model's entropy increases as the size of the nanoparticles get larger. A similar effect is seen when the radiative flow and the Prandtl–Eyring variable-II are improved." @default.
- W4200351738 created "2021-12-31" @default.
- W4200351738 creator A5026177042 @default.
- W4200351738 creator A5030756029 @default.
- W4200351738 creator A5032224226 @default.
- W4200351738 creator A5050458973 @default.
- W4200351738 creator A5057525661 @default.
- W4200351738 creator A5075214573 @default.
- W4200351738 creator A5080064006 @default.
- W4200351738 creator A5081131974 @default.
- W4200351738 date "2021-12-07" @default.
- W4200351738 modified "2023-10-14" @default.
- W4200351738 title "The improved thermal efficiency of Prandtl–Eyring hybrid nanofluid via classical Keller box technique" @default.
- W4200351738 cites W2013503353 @default.
- W4200351738 cites W2061237658 @default.
- W4200351738 cites W2153963422 @default.
- W4200351738 cites W2400413049 @default.
- W4200351738 cites W2580630206 @default.
- W4200351738 cites W2583217629 @default.
- W4200351738 cites W2605277590 @default.
- W4200351738 cites W2610706157 @default.
- W4200351738 cites W2745506535 @default.
- W4200351738 cites W2776636013 @default.
- W4200351738 cites W2790616810 @default.
- W4200351738 cites W2791273710 @default.
- W4200351738 cites W2801894349 @default.
- W4200351738 cites W2805102130 @default.
- W4200351738 cites W2921030827 @default.
- W4200351738 cites W2921336688 @default.
- W4200351738 cites W2949350960 @default.
- W4200351738 cites W2983681949 @default.
- W4200351738 cites W2998331294 @default.
- W4200351738 cites W2999230873 @default.
- W4200351738 cites W3008527861 @default.
- W4200351738 cites W3011071348 @default.
- W4200351738 cites W3023804423 @default.
- W4200351738 cites W3028817027 @default.
- W4200351738 cites W3033072233 @default.
- W4200351738 cites W3035399724 @default.
- W4200351738 cites W3085045792 @default.
- W4200351738 cites W3087750250 @default.
- W4200351738 cites W3091893759 @default.
- W4200351738 cites W3110111071 @default.
- W4200351738 cites W3119137986 @default.
- W4200351738 cites W3119696561 @default.
- W4200351738 cites W3121136809 @default.
- W4200351738 cites W3127324865 @default.
- W4200351738 cites W3132547241 @default.
- W4200351738 cites W3133566138 @default.
- W4200351738 cites W3133979087 @default.
- W4200351738 cites W3134872028 @default.
- W4200351738 cites W3135563512 @default.
- W4200351738 cites W3136050809 @default.
- W4200351738 cites W3154811775 @default.
- W4200351738 cites W3156074463 @default.
- W4200351738 cites W3156179721 @default.
- W4200351738 cites W3156191881 @default.
- W4200351738 cites W3156686575 @default.
- W4200351738 cites W3161935798 @default.
- W4200351738 cites W3164711741 @default.
- W4200351738 cites W3170817511 @default.
- W4200351738 cites W3171758606 @default.
- W4200351738 cites W3174908686 @default.
- W4200351738 cites W3175183179 @default.
- W4200351738 cites W3176361624 @default.
- W4200351738 cites W3177307626 @default.
- W4200351738 cites W3178393612 @default.
- W4200351738 cites W3178757419 @default.
- W4200351738 cites W3179222328 @default.
- W4200351738 cites W3179406477 @default.
- W4200351738 cites W3187395651 @default.
- W4200351738 cites W3188132215 @default.
- W4200351738 cites W3188206946 @default.
- W4200351738 cites W3190957367 @default.
- W4200351738 cites W3191965477 @default.
- W4200351738 cites W3192515000 @default.
- W4200351738 cites W3192920599 @default.
- W4200351738 cites W3193383329 @default.
- W4200351738 cites W3193514734 @default.
- W4200351738 cites W3194436711 @default.
- W4200351738 cites W3195927140 @default.
- W4200351738 cites W3196639109 @default.
- W4200351738 cites W3198721478 @default.
- W4200351738 cites W3199492343 @default.
- W4200351738 cites W3199579427 @default.
- W4200351738 cites W3200181991 @default.
- W4200351738 cites W3200383872 @default.
- W4200351738 cites W3202267120 @default.
- W4200351738 cites W3204679827 @default.
- W4200351738 cites W3206512440 @default.
- W4200351738 cites W4300418606 @default.
- W4200351738 doi "https://doi.org/10.1038/s41598-021-02756-4" @default.
- W4200351738 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34876598" @default.
- W4200351738 hasPublicationYear "2021" @default.
- W4200351738 type Work @default.
- W4200351738 citedByCount "18" @default.
- W4200351738 countsByYear W42003517382022 @default.
- W4200351738 countsByYear W42003517382023 @default.
- W4200351738 crossrefType "journal-article" @default.
- W4200351738 hasAuthorship W4200351738A5026177042 @default.