Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200359273> ?p ?o ?g. }
- W4200359273 endingPage "103651" @default.
- W4200359273 startingPage "103651" @default.
- W4200359273 abstract "Studies for sepsis prediction using machine learning are developing rapidly in medical science recently. In this review, we propose a set of new evaluation criteria and reporting standards to assess 21 qualified machine learning models for quality analysis based on PRISMA. Our assessment shows that (1.) the definition of sepsis is not consistent among the studies; (2.) data sources and data preprocessing methods, machine learning models, feature engineering, and inclusion types vary widely among the studies; (3.) the closer to the onset of sepsis, the higher the value of AUROC is; (4.) the improvement in AUROC is primarily due to using machine learning as a feature engineering tool; (5.) deep neural networks coupled with Sepsis-3 diagnostic criteria tend to yield better results on the time series data collected from patients with sepsis. The new evaluation criteria and reporting standards will facilitate the development of improved machine learning models for clinical applications." @default.
- W4200359273 created "2021-12-31" @default.
- W4200359273 creator A5009123701 @default.
- W4200359273 creator A5011580716 @default.
- W4200359273 creator A5015195367 @default.
- W4200359273 creator A5015351887 @default.
- W4200359273 creator A5017541508 @default.
- W4200359273 creator A5028340183 @default.
- W4200359273 creator A5048364533 @default.
- W4200359273 creator A5048587276 @default.
- W4200359273 creator A5049306248 @default.
- W4200359273 creator A5069567112 @default.
- W4200359273 creator A5072044103 @default.
- W4200359273 date "2022-01-01" @default.
- W4200359273 modified "2023-10-14" @default.
- W4200359273 title "Evaluating machine learning models for sepsis prediction: A systematic review of methodologies" @default.
- W4200359273 cites W2032193101 @default.
- W4200359273 cites W2144589352 @default.
- W4200359273 cites W2200122354 @default.
- W4200359273 cites W2280404143 @default.
- W4200359273 cites W2397616787 @default.
- W4200359273 cites W2519485429 @default.
- W4200359273 cites W2580821343 @default.
- W4200359273 cites W2610332124 @default.
- W4200359273 cites W2748885884 @default.
- W4200359273 cites W2750557731 @default.
- W4200359273 cites W2753278547 @default.
- W4200359273 cites W2776803885 @default.
- W4200359273 cites W2791458756 @default.
- W4200359273 cites W2808829764 @default.
- W4200359273 cites W2904040889 @default.
- W4200359273 cites W2905123315 @default.
- W4200359273 cites W2905983446 @default.
- W4200359273 cites W2910910290 @default.
- W4200359273 cites W2940553617 @default.
- W4200359273 cites W2956342844 @default.
- W4200359273 cites W2969225972 @default.
- W4200359273 cites W2987952249 @default.
- W4200359273 cites W2992764683 @default.
- W4200359273 cites W3008421095 @default.
- W4200359273 cites W3008647172 @default.
- W4200359273 cites W3012555526 @default.
- W4200359273 cites W3012828280 @default.
- W4200359273 cites W3013393665 @default.
- W4200359273 cites W3033966842 @default.
- W4200359273 cites W3090266264 @default.
- W4200359273 cites W3090569391 @default.
- W4200359273 cites W3097374997 @default.
- W4200359273 cites W3108946043 @default.
- W4200359273 cites W3109812972 @default.
- W4200359273 cites W3111698685 @default.
- W4200359273 cites W3163529572 @default.
- W4200359273 cites W3175496536 @default.
- W4200359273 cites W3198781266 @default.
- W4200359273 doi "https://doi.org/10.1016/j.isci.2021.103651" @default.
- W4200359273 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35028534" @default.
- W4200359273 hasPublicationYear "2022" @default.
- W4200359273 type Work @default.
- W4200359273 citedByCount "12" @default.
- W4200359273 countsByYear W42003592732022 @default.
- W4200359273 countsByYear W42003592732023 @default.
- W4200359273 crossrefType "journal-article" @default.
- W4200359273 hasAuthorship W4200359273A5009123701 @default.
- W4200359273 hasAuthorship W4200359273A5011580716 @default.
- W4200359273 hasAuthorship W4200359273A5015195367 @default.
- W4200359273 hasAuthorship W4200359273A5015351887 @default.
- W4200359273 hasAuthorship W4200359273A5017541508 @default.
- W4200359273 hasAuthorship W4200359273A5028340183 @default.
- W4200359273 hasAuthorship W4200359273A5048364533 @default.
- W4200359273 hasAuthorship W4200359273A5048587276 @default.
- W4200359273 hasAuthorship W4200359273A5049306248 @default.
- W4200359273 hasAuthorship W4200359273A5069567112 @default.
- W4200359273 hasAuthorship W4200359273A5072044103 @default.
- W4200359273 hasBestOaLocation W42003592731 @default.
- W4200359273 hasConcept C10551718 @default.
- W4200359273 hasConcept C108583219 @default.
- W4200359273 hasConcept C119857082 @default.
- W4200359273 hasConcept C126322002 @default.
- W4200359273 hasConcept C138885662 @default.
- W4200359273 hasConcept C154945302 @default.
- W4200359273 hasConcept C2522767166 @default.
- W4200359273 hasConcept C2776401178 @default.
- W4200359273 hasConcept C2778384902 @default.
- W4200359273 hasConcept C2778827112 @default.
- W4200359273 hasConcept C34736171 @default.
- W4200359273 hasConcept C41008148 @default.
- W4200359273 hasConcept C41895202 @default.
- W4200359273 hasConcept C50644808 @default.
- W4200359273 hasConcept C58489278 @default.
- W4200359273 hasConcept C71924100 @default.
- W4200359273 hasConceptScore W4200359273C10551718 @default.
- W4200359273 hasConceptScore W4200359273C108583219 @default.
- W4200359273 hasConceptScore W4200359273C119857082 @default.
- W4200359273 hasConceptScore W4200359273C126322002 @default.
- W4200359273 hasConceptScore W4200359273C138885662 @default.
- W4200359273 hasConceptScore W4200359273C154945302 @default.
- W4200359273 hasConceptScore W4200359273C2522767166 @default.
- W4200359273 hasConceptScore W4200359273C2776401178 @default.