Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200366988> ?p ?o ?g. }
- W4200366988 endingPage "127297" @default.
- W4200366988 startingPage "127297" @default.
- W4200366988 abstract "Researchers have attempted to use machine learning algorithms to replace physically based models for streamflow prediction. Although existing studies have contributed to improving machine learning methods, they still have weaknesses, such as large dataset requirements and overfitting. Therefore, we propose an approach that combines the Weather Research and Forecasting hydrological modeling system (WRF-Hydro) and the Long Short-Term Memory (LSTM) network, i.e., WRF-Hydro-LSTM, to improve streamflow simulations. In this approach, LSTM was employed to predict the residual errors of WRF-Hydro; in contrast, the conventional approach with LSTM predicts streamflow directly. Here, we performed numerical experiments to predict the inflow of Soyangho Lake in South Korea using WRF-Hydro-LSTM, WRF-Hydro-only, and LSTM-only. WRF-Hydro-LSTM and LSTM-only showed better results (NSE = 0.95 and R greater than 0.96) compared to WRF-Hydro-only (NSE = 0.72 and R = 0.88); however, in terms of the percent bias, WRF-Hydro-LSTM had a better value (1.75) than LSTM-only (17.36). While the LSTM-only follows objective functions and not physical principles, WRF-Hydro-LSTM simulates residual errors and efficiently decreases uncertainties that are inherent with conventional methods. Furthermore, a sensitivity test on the training dataset indicated that the correlation coefficient and NSE value were not overly sensitive, but the PBIAS value differed substantially depending on the training set. This study demonstrates that WRF-Hydro-LSTM is particularly useful for representing real-world physical constraints and thus can potentially improve streamflow prediction compared to using either of the two approaches exclusively." @default.
- W4200366988 created "2021-12-31" @default.
- W4200366988 creator A5001135312 @default.
- W4200366988 creator A5066730298 @default.
- W4200366988 date "2022-02-01" @default.
- W4200366988 modified "2023-10-10" @default.
- W4200366988 title "Improving streamflow prediction in the WRF-Hydro model with LSTM networks" @default.
- W4200366988 cites W1019670007 @default.
- W4200366988 cites W1689711448 @default.
- W4200366988 cites W1855207878 @default.
- W4200366988 cites W1941098055 @default.
- W4200366988 cites W1966334841 @default.
- W4200366988 cites W1966733414 @default.
- W4200366988 cites W1973663667 @default.
- W4200366988 cites W1983083246 @default.
- W4200366988 cites W2001991385 @default.
- W4200366988 cites W2004041476 @default.
- W4200366988 cites W2007642482 @default.
- W4200366988 cites W2030134440 @default.
- W4200366988 cites W2044710267 @default.
- W4200366988 cites W2056549352 @default.
- W4200366988 cites W2058998445 @default.
- W4200366988 cites W2062758076 @default.
- W4200366988 cites W2064675550 @default.
- W4200366988 cites W2070188654 @default.
- W4200366988 cites W2075533163 @default.
- W4200366988 cites W2113317191 @default.
- W4200366988 cites W2117319840 @default.
- W4200366988 cites W2126332135 @default.
- W4200366988 cites W2136282077 @default.
- W4200366988 cites W2141143585 @default.
- W4200366988 cites W2171675471 @default.
- W4200366988 cites W2174485043 @default.
- W4200366988 cites W2175815314 @default.
- W4200366988 cites W2178188893 @default.
- W4200366988 cites W2282277244 @default.
- W4200366988 cites W2347082512 @default.
- W4200366988 cites W2395579298 @default.
- W4200366988 cites W2471623547 @default.
- W4200366988 cites W2538346605 @default.
- W4200366988 cites W2564545777 @default.
- W4200366988 cites W2583224812 @default.
- W4200366988 cites W2605739831 @default.
- W4200366988 cites W2745687627 @default.
- W4200366988 cites W2793834717 @default.
- W4200366988 cites W2800819102 @default.
- W4200366988 cites W2804523998 @default.
- W4200366988 cites W2908766529 @default.
- W4200366988 cites W2921195214 @default.
- W4200366988 cites W2986457312 @default.
- W4200366988 cites W2998268303 @default.
- W4200366988 cites W3044346761 @default.
- W4200366988 cites W3125807057 @default.
- W4200366988 cites W77393038 @default.
- W4200366988 cites W784579088 @default.
- W4200366988 doi "https://doi.org/10.1016/j.jhydrol.2021.127297" @default.
- W4200366988 hasPublicationYear "2022" @default.
- W4200366988 type Work @default.
- W4200366988 citedByCount "51" @default.
- W4200366988 countsByYear W42003669882022 @default.
- W4200366988 countsByYear W42003669882023 @default.
- W4200366988 crossrefType "journal-article" @default.
- W4200366988 hasAuthorship W4200366988A5001135312 @default.
- W4200366988 hasAuthorship W4200366988A5066730298 @default.
- W4200366988 hasBestOaLocation W42003669881 @default.
- W4200366988 hasConcept C11413529 @default.
- W4200366988 hasConcept C119857082 @default.
- W4200366988 hasConcept C121332964 @default.
- W4200366988 hasConcept C126645576 @default.
- W4200366988 hasConcept C127313418 @default.
- W4200366988 hasConcept C133204551 @default.
- W4200366988 hasConcept C153294291 @default.
- W4200366988 hasConcept C154945302 @default.
- W4200366988 hasConcept C155512373 @default.
- W4200366988 hasConcept C205649164 @default.
- W4200366988 hasConcept C22019652 @default.
- W4200366988 hasConcept C2776132308 @default.
- W4200366988 hasConcept C39432304 @default.
- W4200366988 hasConcept C41008148 @default.
- W4200366988 hasConcept C49204034 @default.
- W4200366988 hasConcept C50644808 @default.
- W4200366988 hasConcept C53739315 @default.
- W4200366988 hasConcept C58640448 @default.
- W4200366988 hasConceptScore W4200366988C11413529 @default.
- W4200366988 hasConceptScore W4200366988C119857082 @default.
- W4200366988 hasConceptScore W4200366988C121332964 @default.
- W4200366988 hasConceptScore W4200366988C126645576 @default.
- W4200366988 hasConceptScore W4200366988C127313418 @default.
- W4200366988 hasConceptScore W4200366988C133204551 @default.
- W4200366988 hasConceptScore W4200366988C153294291 @default.
- W4200366988 hasConceptScore W4200366988C154945302 @default.
- W4200366988 hasConceptScore W4200366988C155512373 @default.
- W4200366988 hasConceptScore W4200366988C205649164 @default.
- W4200366988 hasConceptScore W4200366988C22019652 @default.
- W4200366988 hasConceptScore W4200366988C2776132308 @default.
- W4200366988 hasConceptScore W4200366988C39432304 @default.
- W4200366988 hasConceptScore W4200366988C41008148 @default.
- W4200366988 hasConceptScore W4200366988C49204034 @default.