Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200367127> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W4200367127 endingPage "107788" @default.
- W4200367127 startingPage "107788" @default.
- W4200367127 abstract "Single image dehazing remove haze from degraded images and recover clean scenes. Prior based Methods can achieve great results on some haze images, but their performance is limited by the handcraft prior itself. Recently, many learning-based approaches has been proposed. Most of these modules rely on matching clean and haze images for training. However, such kind of real world data can be hard to get. Also the domain shift between training and testing data may affect the results. Some unsupervised methods have been proved to work on haze scenes but they still rely on handcraft priors to guide the training. In this paper, we proposed an Unsupervised Single Image Dehazing method using internal learning based on the optical model of haze and other haze-like degradation images. A Pyramid Deep Image strategy is used to gradually generate clean background. The entire training doesn’t need any extra data or handcraft prior, and only needs the testing image itself. The proposed method is able to deal with different kinds of haze images including other haze-like degradation (like nighttime images and underwater images)." @default.
- W4200367127 created "2021-12-31" @default.
- W4200367127 creator A5024330462 @default.
- W4200367127 creator A5087486639 @default.
- W4200367127 date "2022-04-01" @default.
- W4200367127 modified "2023-10-05" @default.
- W4200367127 title "“Pyramid Deep dehazing”: An unsupervised single image dehazing method using deep image prior" @default.
- W4200367127 cites W2028990532 @default.
- W4200367127 cites W2085411191 @default.
- W4200367127 cites W2114867966 @default.
- W4200367127 cites W2128254161 @default.
- W4200367127 cites W2133665775 @default.
- W4200367127 cites W2160956336 @default.
- W4200367127 cites W2256362396 @default.
- W4200367127 cites W2467473805 @default.
- W4200367127 cites W2486571449 @default.
- W4200367127 cites W2519481857 @default.
- W4200367127 cites W2779176852 @default.
- W4200367127 cites W2945111379 @default.
- W4200367127 cites W2982374186 @default.
- W4200367127 cites W2985194834 @default.
- W4200367127 cites W2998249728 @default.
- W4200367127 cites W3034278302 @default.
- W4200367127 cites W3034331889 @default.
- W4200367127 cites W3035601380 @default.
- W4200367127 cites W3135542706 @default.
- W4200367127 cites W3174407746 @default.
- W4200367127 doi "https://doi.org/10.1016/j.optlastec.2021.107788" @default.
- W4200367127 hasPublicationYear "2022" @default.
- W4200367127 type Work @default.
- W4200367127 citedByCount "6" @default.
- W4200367127 countsByYear W42003671272022 @default.
- W4200367127 countsByYear W42003671272023 @default.
- W4200367127 crossrefType "journal-article" @default.
- W4200367127 hasAuthorship W4200367127A5024330462 @default.
- W4200367127 hasAuthorship W4200367127A5087486639 @default.
- W4200367127 hasConcept C108583219 @default.
- W4200367127 hasConcept C115961682 @default.
- W4200367127 hasConcept C121332964 @default.
- W4200367127 hasConcept C142575187 @default.
- W4200367127 hasConcept C153180895 @default.
- W4200367127 hasConcept C153294291 @default.
- W4200367127 hasConcept C154945302 @default.
- W4200367127 hasConcept C2524010 @default.
- W4200367127 hasConcept C31972630 @default.
- W4200367127 hasConcept C33923547 @default.
- W4200367127 hasConcept C41008148 @default.
- W4200367127 hasConcept C79974267 @default.
- W4200367127 hasConceptScore W4200367127C108583219 @default.
- W4200367127 hasConceptScore W4200367127C115961682 @default.
- W4200367127 hasConceptScore W4200367127C121332964 @default.
- W4200367127 hasConceptScore W4200367127C142575187 @default.
- W4200367127 hasConceptScore W4200367127C153180895 @default.
- W4200367127 hasConceptScore W4200367127C153294291 @default.
- W4200367127 hasConceptScore W4200367127C154945302 @default.
- W4200367127 hasConceptScore W4200367127C2524010 @default.
- W4200367127 hasConceptScore W4200367127C31972630 @default.
- W4200367127 hasConceptScore W4200367127C33923547 @default.
- W4200367127 hasConceptScore W4200367127C41008148 @default.
- W4200367127 hasConceptScore W4200367127C79974267 @default.
- W4200367127 hasLocation W42003671271 @default.
- W4200367127 hasOpenAccess W4200367127 @default.
- W4200367127 hasPrimaryLocation W42003671271 @default.
- W4200367127 hasRelatedWork W1559208858 @default.
- W4200367127 hasRelatedWork W1792107727 @default.
- W4200367127 hasRelatedWork W2130228941 @default.
- W4200367127 hasRelatedWork W2147246507 @default.
- W4200367127 hasRelatedWork W2161229648 @default.
- W4200367127 hasRelatedWork W2577364290 @default.
- W4200367127 hasRelatedWork W2738221750 @default.
- W4200367127 hasRelatedWork W2991860602 @default.
- W4200367127 hasRelatedWork W2993674027 @default.
- W4200367127 hasRelatedWork W3134956238 @default.
- W4200367127 hasVolume "148" @default.
- W4200367127 isParatext "false" @default.
- W4200367127 isRetracted "false" @default.
- W4200367127 workType "article" @default.