Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200367249> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W4200367249 abstract "With an increasing number of robotic and prosthetic devices, there is a need for intuitive Muscle-Machine Interfaces (MuMIs) that allow the user to have an embodied interaction with the devices they are controlling. Such MuMIs can be developed using machine learning based methods that utilize myoelectric activations from the muscles of the user to decode their intention. However, the choice of the learning method is subjective and depends on the features extracted from the raw Electromyography signals as well as on the intended application. In this work, we compare the performance of five machine learning methods and eight time-domain feature extraction techniques in discriminating between different gestures executed by the user of an EMG based MuMI. From the results, it can be seen that the Willison Amplitude performs consistently better for all the machine learning methods compared in this study, while the Zero Crossings achieves the worst results for the Decision Trees and the Random Forests and the Variance offers the worst performance for all the other learning methods. The Random Forests method is shown to achieve the best results in terms of achieved accuracies (has the lowest variance between subjects). In order to experimentally validate the efficiency of the Random Forest classifier and the Willison Amplitude technique, a series of gestures were decoded in a real-time manner from the myoelectric activations of the operator and they were used to control a robot hand." @default.
- W4200367249 created "2021-12-31" @default.
- W4200367249 creator A5014054636 @default.
- W4200367249 creator A5043544803 @default.
- W4200367249 creator A5064359157 @default.
- W4200367249 creator A5087357404 @default.
- W4200367249 date "2021-11-01" @default.
- W4200367249 modified "2023-10-14" @default.
- W4200367249 title "Comparing Machine Learning Methods and Feature Extraction Techniques for the EMG Based Decoding of Human Intention" @default.
- W4200367249 cites W1981173169 @default.
- W4200367249 cites W1983393109 @default.
- W4200367249 cites W1984252493 @default.
- W4200367249 cites W2016284881 @default.
- W4200367249 cites W2052052479 @default.
- W4200367249 cites W2086061329 @default.
- W4200367249 cites W2086087122 @default.
- W4200367249 cites W2097562570 @default.
- W4200367249 cites W2106526692 @default.
- W4200367249 cites W2110119146 @default.
- W4200367249 cites W2119008936 @default.
- W4200367249 cites W2123167643 @default.
- W4200367249 cites W2129316790 @default.
- W4200367249 cites W2133935519 @default.
- W4200367249 cites W2138485357 @default.
- W4200367249 cites W2164006146 @default.
- W4200367249 cites W2165619603 @default.
- W4200367249 cites W2396197441 @default.
- W4200367249 cites W2555541061 @default.
- W4200367249 cites W2770348256 @default.
- W4200367249 cites W2785722663 @default.
- W4200367249 cites W2897832978 @default.
- W4200367249 cites W2898994347 @default.
- W4200367249 cites W2911964244 @default.
- W4200367249 cites W2954564698 @default.
- W4200367249 cites W2969971874 @default.
- W4200367249 cites W2981877040 @default.
- W4200367249 cites W2999390838 @default.
- W4200367249 doi "https://doi.org/10.1109/embc46164.2021.9630998" @default.
- W4200367249 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34892269" @default.
- W4200367249 hasPublicationYear "2021" @default.
- W4200367249 type Work @default.
- W4200367249 citedByCount "10" @default.
- W4200367249 countsByYear W42003672492021 @default.
- W4200367249 countsByYear W42003672492022 @default.
- W4200367249 countsByYear W42003672492023 @default.
- W4200367249 crossrefType "proceedings-article" @default.
- W4200367249 hasAuthorship W4200367249A5014054636 @default.
- W4200367249 hasAuthorship W4200367249A5043544803 @default.
- W4200367249 hasAuthorship W4200367249A5064359157 @default.
- W4200367249 hasAuthorship W4200367249A5087357404 @default.
- W4200367249 hasConcept C11413529 @default.
- W4200367249 hasConcept C119857082 @default.
- W4200367249 hasConcept C153180895 @default.
- W4200367249 hasConcept C154945302 @default.
- W4200367249 hasConcept C159437735 @default.
- W4200367249 hasConcept C169258074 @default.
- W4200367249 hasConcept C207347870 @default.
- W4200367249 hasConcept C28490314 @default.
- W4200367249 hasConcept C41008148 @default.
- W4200367249 hasConcept C52622490 @default.
- W4200367249 hasConcept C57273362 @default.
- W4200367249 hasConcept C90509273 @default.
- W4200367249 hasConcept C95623464 @default.
- W4200367249 hasConceptScore W4200367249C11413529 @default.
- W4200367249 hasConceptScore W4200367249C119857082 @default.
- W4200367249 hasConceptScore W4200367249C153180895 @default.
- W4200367249 hasConceptScore W4200367249C154945302 @default.
- W4200367249 hasConceptScore W4200367249C159437735 @default.
- W4200367249 hasConceptScore W4200367249C169258074 @default.
- W4200367249 hasConceptScore W4200367249C207347870 @default.
- W4200367249 hasConceptScore W4200367249C28490314 @default.
- W4200367249 hasConceptScore W4200367249C41008148 @default.
- W4200367249 hasConceptScore W4200367249C52622490 @default.
- W4200367249 hasConceptScore W4200367249C57273362 @default.
- W4200367249 hasConceptScore W4200367249C90509273 @default.
- W4200367249 hasConceptScore W4200367249C95623464 @default.
- W4200367249 hasLocation W42003672491 @default.
- W4200367249 hasLocation W42003672492 @default.
- W4200367249 hasOpenAccess W4200367249 @default.
- W4200367249 hasPrimaryLocation W42003672491 @default.
- W4200367249 hasRelatedWork W2144059113 @default.
- W4200367249 hasRelatedWork W2146076056 @default.
- W4200367249 hasRelatedWork W2563096758 @default.
- W4200367249 hasRelatedWork W2602341155 @default.
- W4200367249 hasRelatedWork W2811390910 @default.
- W4200367249 hasRelatedWork W2911455822 @default.
- W4200367249 hasRelatedWork W2964383635 @default.
- W4200367249 hasRelatedWork W3174196512 @default.
- W4200367249 hasRelatedWork W4308191010 @default.
- W4200367249 hasRelatedWork W4323021782 @default.
- W4200367249 isParatext "false" @default.
- W4200367249 isRetracted "false" @default.
- W4200367249 workType "article" @default.