Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200368550> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W4200368550 endingPage "1448" @default.
- W4200368550 startingPage "1427" @default.
- W4200368550 abstract "This chapter analyses efficiency of support vector regression (SVR), artificial neural networks (ANNs), and structural vector autoregressive (SVAR) models in terms of in-sample forecasting of portfolio inflows (PIs). Time series daily data sourced from Rand Merchant Bank (RMB) covering the period of 1st March 2004 to 1st February 2016 were used. Mean squared error, root mean squared error, mean absolute error, mean absolute squared error, and root mean scaled log error were used to evaluate model performance. The results showed that SVR has the best modelling performance when compared to others. In determining factors that affect allocation of PIs into South Africa based on SVAR, 69% of the variation was explained by pull factors while 9% was explained by push factor. Hence, SVR model is more accurate than ANNs. This chapter therefore recommends that banking sector particularly RMB should use machine learning technique in modelling PIs for a better financial solution." @default.
- W4200368550 created "2021-12-31" @default.
- W4200368550 creator A5042300139 @default.
- W4200368550 creator A5047053922 @default.
- W4200368550 creator A5081383097 @default.
- W4200368550 creator A5083532175 @default.
- W4200368550 date "2022-01-01" @default.
- W4200368550 modified "2023-09-27" @default.
- W4200368550 title "Modelling and Forecasting Portfolio Inflows" @default.
- W4200368550 cites W1600567366 @default.
- W4200368550 cites W1931875383 @default.
- W4200368550 cites W1966676388 @default.
- W4200368550 cites W2005424446 @default.
- W4200368550 cites W2007694684 @default.
- W4200368550 cites W2019459021 @default.
- W4200368550 cites W2020832745 @default.
- W4200368550 cites W2029803196 @default.
- W4200368550 cites W2032771991 @default.
- W4200368550 cites W2037370667 @default.
- W4200368550 cites W2039935421 @default.
- W4200368550 cites W2043204368 @default.
- W4200368550 cites W2056489048 @default.
- W4200368550 cites W2078565364 @default.
- W4200368550 cites W2101228481 @default.
- W4200368550 cites W2123513648 @default.
- W4200368550 cites W2168175751 @default.
- W4200368550 cites W2992069019 @default.
- W4200368550 cites W2996121507 @default.
- W4200368550 cites W4301352023 @default.
- W4200368550 doi "https://doi.org/10.4018/978-1-6684-2408-7.ch069" @default.
- W4200368550 hasPublicationYear "2022" @default.
- W4200368550 type Work @default.
- W4200368550 citedByCount "0" @default.
- W4200368550 crossrefType "book-chapter" @default.
- W4200368550 hasAuthorship W4200368550A5042300139 @default.
- W4200368550 hasAuthorship W4200368550A5047053922 @default.
- W4200368550 hasAuthorship W4200368550A5081383097 @default.
- W4200368550 hasAuthorship W4200368550A5083532175 @default.
- W4200368550 hasConcept C10138342 @default.
- W4200368550 hasConcept C105795698 @default.
- W4200368550 hasConcept C12267149 @default.
- W4200368550 hasConcept C139945424 @default.
- W4200368550 hasConcept C149782125 @default.
- W4200368550 hasConcept C150217764 @default.
- W4200368550 hasConcept C151406439 @default.
- W4200368550 hasConcept C154945302 @default.
- W4200368550 hasConcept C159877910 @default.
- W4200368550 hasConcept C162324750 @default.
- W4200368550 hasConcept C188154048 @default.
- W4200368550 hasConcept C24338571 @default.
- W4200368550 hasConcept C2780821815 @default.
- W4200368550 hasConcept C33923547 @default.
- W4200368550 hasConcept C41008148 @default.
- W4200368550 hasConcept C50644808 @default.
- W4200368550 hasConceptScore W4200368550C10138342 @default.
- W4200368550 hasConceptScore W4200368550C105795698 @default.
- W4200368550 hasConceptScore W4200368550C12267149 @default.
- W4200368550 hasConceptScore W4200368550C139945424 @default.
- W4200368550 hasConceptScore W4200368550C149782125 @default.
- W4200368550 hasConceptScore W4200368550C150217764 @default.
- W4200368550 hasConceptScore W4200368550C151406439 @default.
- W4200368550 hasConceptScore W4200368550C154945302 @default.
- W4200368550 hasConceptScore W4200368550C159877910 @default.
- W4200368550 hasConceptScore W4200368550C162324750 @default.
- W4200368550 hasConceptScore W4200368550C188154048 @default.
- W4200368550 hasConceptScore W4200368550C24338571 @default.
- W4200368550 hasConceptScore W4200368550C2780821815 @default.
- W4200368550 hasConceptScore W4200368550C33923547 @default.
- W4200368550 hasConceptScore W4200368550C41008148 @default.
- W4200368550 hasConceptScore W4200368550C50644808 @default.
- W4200368550 hasLocation W42003685501 @default.
- W4200368550 hasOpenAccess W4200368550 @default.
- W4200368550 hasPrimaryLocation W42003685501 @default.
- W4200368550 hasRelatedWork W2305568609 @default.
- W4200368550 hasRelatedWork W2550089990 @default.
- W4200368550 hasRelatedWork W2770456714 @default.
- W4200368550 hasRelatedWork W2963766945 @default.
- W4200368550 hasRelatedWork W2991586067 @default.
- W4200368550 hasRelatedWork W3080840844 @default.
- W4200368550 hasRelatedWork W3134598105 @default.
- W4200368550 hasRelatedWork W4283775449 @default.
- W4200368550 hasRelatedWork W4321374973 @default.
- W4200368550 hasRelatedWork W4327622542 @default.
- W4200368550 isParatext "false" @default.
- W4200368550 isRetracted "false" @default.
- W4200368550 workType "book-chapter" @default.