Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200370046> ?p ?o ?g. }
- W4200370046 abstract "Magnetic resonance imaging (MRI) is playing an important role in the classification of breast tumors. MRI can be used to obtain multiparametric (mp) information, such as structural, hemodynamic, and physiological information. Quantitative analysis of mp-MRI data has shown potential in improving the accuracy of breast tumor classification. In general, a large set of quantitative and texture features can be generated depending upon the type of methodology used. A suitable combination of selected quantitative and texture features can further improve the accuracy of tumor classification. Machine learning (ML) classifiers based upon features derived from MRI data have shown potential in tumor classification. There is a need for further research studies on selecting an appropriate combination of features and evaluating the performance of different ML classifiers for accurate classification of breast tumors. The objective of the current study was to develop and optimize an ML framework based upon mp-MRI features for the characterization of breast tumors (malignant vs. benign and low- vs. high-grade). This study included the breast mp-MRI data of 60 female patients with histopathology results. A total of 128 features were extracted from the mp-MRI tumor data followed by features selection. Five ML classifiers were evaluated for tumor classification using 10-fold crossvalidation with 10 repetitions. The support vector machine (SVM) classifier based on optimum features selected using a wrapper method with an adaptive boosting (AdaBoost) technique provided the highest sensitivity (0.96 ± 0.03), specificity (0.92 ± 0.09), and accuracy (94% ± 2.91%) in the classification of malignant versus benign tumors. This method also provided the highest sensitivity (0.94 ± 0.07), specificity (0.80 ± 0.05), and accuracy (90% ± 5.48%) in the classification of low- versus high-grade tumors. These findings suggest that the SVM classifier outperformed other ML methods in the binary classification of breast tumors." @default.
- W4200370046 created "2021-12-31" @default.
- W4200370046 creator A5031325164 @default.
- W4200370046 creator A5040754613 @default.
- W4200370046 creator A5058924754 @default.
- W4200370046 date "2021-12-28" @default.
- W4200370046 modified "2023-10-10" @default.
- W4200370046 title "Characterization of breast tumors using machine learning based upon multiparametric magnetic resonance imaging features" @default.
- W4200370046 cites W1513156534 @default.
- W4200370046 cites W1644997609 @default.
- W4200370046 cites W1660467310 @default.
- W4200370046 cites W1927185672 @default.
- W4200370046 cites W1968114652 @default.
- W4200370046 cites W1975391259 @default.
- W4200370046 cites W1977445321 @default.
- W4200370046 cites W1979226915 @default.
- W4200370046 cites W1990856788 @default.
- W4200370046 cites W2000213588 @default.
- W4200370046 cites W2003057442 @default.
- W4200370046 cites W2003304826 @default.
- W4200370046 cites W2009085725 @default.
- W4200370046 cites W2010871781 @default.
- W4200370046 cites W2027384979 @default.
- W4200370046 cites W2039240409 @default.
- W4200370046 cites W2041607893 @default.
- W4200370046 cites W2049013109 @default.
- W4200370046 cites W2094823820 @default.
- W4200370046 cites W2122825543 @default.
- W4200370046 cites W2132166479 @default.
- W4200370046 cites W2176545597 @default.
- W4200370046 cites W2235070825 @default.
- W4200370046 cites W2238296078 @default.
- W4200370046 cites W2285288894 @default.
- W4200370046 cites W2515832821 @default.
- W4200370046 cites W2525284889 @default.
- W4200370046 cites W2546164912 @default.
- W4200370046 cites W2560546233 @default.
- W4200370046 cites W2587297900 @default.
- W4200370046 cites W2614549267 @default.
- W4200370046 cites W2768185497 @default.
- W4200370046 cites W2781525129 @default.
- W4200370046 cites W2782947650 @default.
- W4200370046 cites W2808366132 @default.
- W4200370046 cites W2911198546 @default.
- W4200370046 cites W2924927402 @default.
- W4200370046 cites W4244238212 @default.
- W4200370046 cites W82946689 @default.
- W4200370046 doi "https://doi.org/10.1002/nbm.4665" @default.
- W4200370046 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34962326" @default.
- W4200370046 hasPublicationYear "2021" @default.
- W4200370046 type Work @default.
- W4200370046 citedByCount "2" @default.
- W4200370046 countsByYear W42003700462022 @default.
- W4200370046 crossrefType "journal-article" @default.
- W4200370046 hasAuthorship W4200370046A5031325164 @default.
- W4200370046 hasAuthorship W4200370046A5040754613 @default.
- W4200370046 hasAuthorship W4200370046A5058924754 @default.
- W4200370046 hasConcept C119857082 @default.
- W4200370046 hasConcept C121608353 @default.
- W4200370046 hasConcept C12267149 @default.
- W4200370046 hasConcept C126322002 @default.
- W4200370046 hasConcept C126838900 @default.
- W4200370046 hasConcept C141404830 @default.
- W4200370046 hasConcept C143409427 @default.
- W4200370046 hasConcept C148483581 @default.
- W4200370046 hasConcept C153180895 @default.
- W4200370046 hasConcept C154945302 @default.
- W4200370046 hasConcept C2777432617 @default.
- W4200370046 hasConcept C2780472235 @default.
- W4200370046 hasConcept C41008148 @default.
- W4200370046 hasConcept C46686674 @default.
- W4200370046 hasConcept C530470458 @default.
- W4200370046 hasConcept C71924100 @default.
- W4200370046 hasConcept C95623464 @default.
- W4200370046 hasConceptScore W4200370046C119857082 @default.
- W4200370046 hasConceptScore W4200370046C121608353 @default.
- W4200370046 hasConceptScore W4200370046C12267149 @default.
- W4200370046 hasConceptScore W4200370046C126322002 @default.
- W4200370046 hasConceptScore W4200370046C126838900 @default.
- W4200370046 hasConceptScore W4200370046C141404830 @default.
- W4200370046 hasConceptScore W4200370046C143409427 @default.
- W4200370046 hasConceptScore W4200370046C148483581 @default.
- W4200370046 hasConceptScore W4200370046C153180895 @default.
- W4200370046 hasConceptScore W4200370046C154945302 @default.
- W4200370046 hasConceptScore W4200370046C2777432617 @default.
- W4200370046 hasConceptScore W4200370046C2780472235 @default.
- W4200370046 hasConceptScore W4200370046C41008148 @default.
- W4200370046 hasConceptScore W4200370046C46686674 @default.
- W4200370046 hasConceptScore W4200370046C530470458 @default.
- W4200370046 hasConceptScore W4200370046C71924100 @default.
- W4200370046 hasConceptScore W4200370046C95623464 @default.
- W4200370046 hasFunder F4320324473 @default.
- W4200370046 hasIssue "5" @default.
- W4200370046 hasLocation W42003700461 @default.
- W4200370046 hasLocation W42003700462 @default.
- W4200370046 hasOpenAccess W4200370046 @default.
- W4200370046 hasPrimaryLocation W42003700461 @default.
- W4200370046 hasRelatedWork W1502951582 @default.
- W4200370046 hasRelatedWork W1515861009 @default.
- W4200370046 hasRelatedWork W1570592793 @default.