Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200370851> ?p ?o ?g. }
- W4200370851 abstract "Recently, the electroencephalogram (EEG) signal presents an excellent potential for a new person identification technique. This paper proposed a new method for EEG feature extraction based on fusing different EEG features. In general, EEG feature extraction can be categorized into three types which are time domain, frequency domain, and time-frequency domain features. This paper also applied several supervised learning approaches to select the efficient classifier for EEG-based person identification. The performance of the proposed method is tested using standard EEG datasets, namely, EEG Motor Movement/Imagery Dataset. The results are evaluated using four common criteria which are: accuracy rate (ACC <inf xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>EEC</inf> ), sensitivity (Sen <inf xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>EEC</inf> ), specificity (Spe <inf xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>EEC</inf> ) and F-score (FS <inf xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>EEC</inf> ). The experiment results show that the fusion approach achieves better results compared with a traditional EEG feature extraction approach. The proposed fusion feature method is recommended to apply in more challenging signal problem instances, such as user authentication or early detection of epilepsy based on EEG signals." @default.
- W4200370851 created "2021-12-31" @default.
- W4200370851 creator A5003975347 @default.
- W4200370851 creator A5024473397 @default.
- W4200370851 creator A5029512928 @default.
- W4200370851 creator A5058957048 @default.
- W4200370851 creator A5062826520 @default.
- W4200370851 creator A5081678536 @default.
- W4200370851 creator A5085661326 @default.
- W4200370851 date "2021-09-01" @default.
- W4200370851 modified "2023-10-04" @default.
- W4200370851 title "EEG Feature Fusion for Person Identification Using Efficient Machine Learning Approach" @default.
- W4200370851 cites W1897682791 @default.
- W4200370851 cites W1970374581 @default.
- W4200370851 cites W1970453117 @default.
- W4200370851 cites W1980837896 @default.
- W4200370851 cites W1988576064 @default.
- W4200370851 cites W2000408184 @default.
- W4200370851 cites W2001612033 @default.
- W4200370851 cites W2002138225 @default.
- W4200370851 cites W2005791255 @default.
- W4200370851 cites W2015157307 @default.
- W4200370851 cites W2027591484 @default.
- W4200370851 cites W2030504055 @default.
- W4200370851 cites W2044151123 @default.
- W4200370851 cites W2057311210 @default.
- W4200370851 cites W2067445833 @default.
- W4200370851 cites W2107072595 @default.
- W4200370851 cites W2119008936 @default.
- W4200370851 cites W2119314811 @default.
- W4200370851 cites W2130133014 @default.
- W4200370851 cites W2138444990 @default.
- W4200370851 cites W2139564752 @default.
- W4200370851 cites W2162800060 @default.
- W4200370851 cites W2171388940 @default.
- W4200370851 cites W2288961935 @default.
- W4200370851 cites W2342766803 @default.
- W4200370851 cites W2526475029 @default.
- W4200370851 cites W2540507509 @default.
- W4200370851 cites W2612047884 @default.
- W4200370851 cites W2734337238 @default.
- W4200370851 cites W2767073209 @default.
- W4200370851 cites W2768497671 @default.
- W4200370851 cites W2779681393 @default.
- W4200370851 cites W2896481669 @default.
- W4200370851 cites W2901891485 @default.
- W4200370851 cites W2902573949 @default.
- W4200370851 cites W2913150817 @default.
- W4200370851 cites W2941986503 @default.
- W4200370851 cites W2997207075 @default.
- W4200370851 cites W3017974589 @default.
- W4200370851 cites W3040933017 @default.
- W4200370851 cites W3082974932 @default.
- W4200370851 cites W3132621729 @default.
- W4200370851 cites W3175242887 @default.
- W4200370851 cites W4247263980 @default.
- W4200370851 cites W638190039 @default.
- W4200370851 cites W772526079 @default.
- W4200370851 doi "https://doi.org/10.1109/picict53635.2021.00029" @default.
- W4200370851 hasPublicationYear "2021" @default.
- W4200370851 type Work @default.
- W4200370851 citedByCount "1" @default.
- W4200370851 countsByYear W42003708512022 @default.
- W4200370851 crossrefType "proceedings-article" @default.
- W4200370851 hasAuthorship W4200370851A5003975347 @default.
- W4200370851 hasAuthorship W4200370851A5024473397 @default.
- W4200370851 hasAuthorship W4200370851A5029512928 @default.
- W4200370851 hasAuthorship W4200370851A5058957048 @default.
- W4200370851 hasAuthorship W4200370851A5062826520 @default.
- W4200370851 hasAuthorship W4200370851A5081678536 @default.
- W4200370851 hasAuthorship W4200370851A5085661326 @default.
- W4200370851 hasConcept C116834253 @default.
- W4200370851 hasConcept C118552586 @default.
- W4200370851 hasConcept C119857082 @default.
- W4200370851 hasConcept C138885662 @default.
- W4200370851 hasConcept C153180895 @default.
- W4200370851 hasConcept C154945302 @default.
- W4200370851 hasConcept C15744967 @default.
- W4200370851 hasConcept C2776401178 @default.
- W4200370851 hasConcept C28490314 @default.
- W4200370851 hasConcept C41008148 @default.
- W4200370851 hasConcept C41895202 @default.
- W4200370851 hasConcept C522805319 @default.
- W4200370851 hasConcept C52622490 @default.
- W4200370851 hasConcept C59822182 @default.
- W4200370851 hasConcept C86803240 @default.
- W4200370851 hasConcept C95623464 @default.
- W4200370851 hasConceptScore W4200370851C116834253 @default.
- W4200370851 hasConceptScore W4200370851C118552586 @default.
- W4200370851 hasConceptScore W4200370851C119857082 @default.
- W4200370851 hasConceptScore W4200370851C138885662 @default.
- W4200370851 hasConceptScore W4200370851C153180895 @default.
- W4200370851 hasConceptScore W4200370851C154945302 @default.
- W4200370851 hasConceptScore W4200370851C15744967 @default.
- W4200370851 hasConceptScore W4200370851C2776401178 @default.
- W4200370851 hasConceptScore W4200370851C28490314 @default.
- W4200370851 hasConceptScore W4200370851C41008148 @default.
- W4200370851 hasConceptScore W4200370851C41895202 @default.
- W4200370851 hasConceptScore W4200370851C522805319 @default.
- W4200370851 hasConceptScore W4200370851C52622490 @default.