Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200372017> ?p ?o ?g. }
- W4200372017 endingPage "103582" @default.
- W4200372017 startingPage "103582" @default.
- W4200372017 abstract "Ultra-high chip power densities that are expected to surpass 1-2kW/cm2 in future high-performance systems cannot be easily handled by conventional cooling methods. Various emerging cooling methods, such as liquid cooling via microchannels, thermoelectric coolers (TECs), two-phase vapor chambers, and hybrid cooling options have been designed to efficiently remove heat from high-performance processors. However, selecting the optimal cooling solution for a given chip and determining the optimal cooling parameters for that solution to achieve high efficiency are open problems. These problems are, in fact, computationally expensive because of the massive space of possible solutions. To address this design challenge, this article introduces a deep learning-based cooling design optimization flow that rapidly and accurately converges to the optimal cooling solution as well as the optimal cooling parameters for a given chip floorplan and its power profile." @default.
- W4200372017 created "2021-12-31" @default.
- W4200372017 creator A5041561320 @default.
- W4200372017 creator A5064676631 @default.
- W4200372017 date "2022-01-01" @default.
- W4200372017 modified "2023-10-06" @default.
- W4200372017 title "Neural network-based cooling design for high-performance processors" @default.
- W4200372017 cites W2025110944 @default.
- W4200372017 cites W2035224686 @default.
- W4200372017 cites W2110134128 @default.
- W4200372017 cites W2118194821 @default.
- W4200372017 cites W2136769255 @default.
- W4200372017 cites W2163517070 @default.
- W4200372017 cites W2165071510 @default.
- W4200372017 cites W2344885229 @default.
- W4200372017 cites W2613391629 @default.
- W4200372017 cites W2808761920 @default.
- W4200372017 cites W2919233808 @default.
- W4200372017 cites W2920189312 @default.
- W4200372017 cites W2947534494 @default.
- W4200372017 cites W2955174464 @default.
- W4200372017 cites W2991707790 @default.
- W4200372017 cites W3009849879 @default.
- W4200372017 cites W3016104096 @default.
- W4200372017 cites W3037430043 @default.
- W4200372017 cites W3102123340 @default.
- W4200372017 cites W4253995697 @default.
- W4200372017 doi "https://doi.org/10.1016/j.isci.2021.103582" @default.
- W4200372017 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35005532" @default.
- W4200372017 hasPublicationYear "2022" @default.
- W4200372017 type Work @default.
- W4200372017 citedByCount "0" @default.
- W4200372017 crossrefType "journal-article" @default.
- W4200372017 hasAuthorship W4200372017A5041561320 @default.
- W4200372017 hasAuthorship W4200372017A5064676631 @default.
- W4200372017 hasBestOaLocation W42003720173 @default.
- W4200372017 hasConcept C11026015 @default.
- W4200372017 hasConcept C114834414 @default.
- W4200372017 hasConcept C119857082 @default.
- W4200372017 hasConcept C121332964 @default.
- W4200372017 hasConcept C12241035 @default.
- W4200372017 hasConcept C127413603 @default.
- W4200372017 hasConcept C128458982 @default.
- W4200372017 hasConcept C130145326 @default.
- W4200372017 hasConcept C149635348 @default.
- W4200372017 hasConcept C154945302 @default.
- W4200372017 hasConcept C163258240 @default.
- W4200372017 hasConcept C165005293 @default.
- W4200372017 hasConcept C186394612 @default.
- W4200372017 hasConcept C21880701 @default.
- W4200372017 hasConcept C41008148 @default.
- W4200372017 hasConcept C50644808 @default.
- W4200372017 hasConcept C62520636 @default.
- W4200372017 hasConcept C63024428 @default.
- W4200372017 hasConcept C76155785 @default.
- W4200372017 hasConcept C7694927 @default.
- W4200372017 hasConcept C78519656 @default.
- W4200372017 hasConcept C97355855 @default.
- W4200372017 hasConcept C98444146 @default.
- W4200372017 hasConceptScore W4200372017C11026015 @default.
- W4200372017 hasConceptScore W4200372017C114834414 @default.
- W4200372017 hasConceptScore W4200372017C119857082 @default.
- W4200372017 hasConceptScore W4200372017C121332964 @default.
- W4200372017 hasConceptScore W4200372017C12241035 @default.
- W4200372017 hasConceptScore W4200372017C127413603 @default.
- W4200372017 hasConceptScore W4200372017C128458982 @default.
- W4200372017 hasConceptScore W4200372017C130145326 @default.
- W4200372017 hasConceptScore W4200372017C149635348 @default.
- W4200372017 hasConceptScore W4200372017C154945302 @default.
- W4200372017 hasConceptScore W4200372017C163258240 @default.
- W4200372017 hasConceptScore W4200372017C165005293 @default.
- W4200372017 hasConceptScore W4200372017C186394612 @default.
- W4200372017 hasConceptScore W4200372017C21880701 @default.
- W4200372017 hasConceptScore W4200372017C41008148 @default.
- W4200372017 hasConceptScore W4200372017C50644808 @default.
- W4200372017 hasConceptScore W4200372017C62520636 @default.
- W4200372017 hasConceptScore W4200372017C63024428 @default.
- W4200372017 hasConceptScore W4200372017C76155785 @default.
- W4200372017 hasConceptScore W4200372017C7694927 @default.
- W4200372017 hasConceptScore W4200372017C78519656 @default.
- W4200372017 hasConceptScore W4200372017C97355855 @default.
- W4200372017 hasConceptScore W4200372017C98444146 @default.
- W4200372017 hasFunder F4320306076 @default.
- W4200372017 hasIssue "1" @default.
- W4200372017 hasLocation W42003720171 @default.
- W4200372017 hasLocation W42003720172 @default.
- W4200372017 hasLocation W42003720173 @default.
- W4200372017 hasLocation W42003720174 @default.
- W4200372017 hasOpenAccess W4200372017 @default.
- W4200372017 hasPrimaryLocation W42003720171 @default.
- W4200372017 hasRelatedWork W1606239541 @default.
- W4200372017 hasRelatedWork W2049463261 @default.
- W4200372017 hasRelatedWork W2128361774 @default.
- W4200372017 hasRelatedWork W2352997462 @default.
- W4200372017 hasRelatedWork W2364649309 @default.
- W4200372017 hasRelatedWork W2392616422 @default.
- W4200372017 hasRelatedWork W2886805502 @default.
- W4200372017 hasRelatedWork W2956063092 @default.