Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200376552> ?p ?o ?g. }
- W4200376552 endingPage "3103" @default.
- W4200376552 startingPage "3103" @default.
- W4200376552 abstract "Computational intelligence has been widely used in medical information processing. The deep learning methods, especially, have many successful applications in medical image analysis. In this paper, we proposed an end-to-end medical lesion segmentation framework based on convolutional neural networks with a dual attention mechanism, which integrates both fully and weakly supervised segmentation. The weakly supervised segmentation module achieves accurate lesion segmentation by using bounding-box labels of lesion areas, which solves the problem of the high cost of pixel-level labels with lesions in the medical images. In addition, a dual attention mechanism is introduced to enhance the network’s ability for visual feature learning. The dual attention mechanism (channel and spatial attention) can help the network pay attention to feature extraction from important regions. Compared with the current mainstream method of weakly supervised segmentation using pseudo labels, it can greatly reduce the gaps between ground-truth labels and pseudo labels. The final experimental results show that our proposed framework achieved more competitive performances on oral lesion dataset, and our framework further extended to dermatological lesion segmentation." @default.
- W4200376552 created "2021-12-31" @default.
- W4200376552 creator A5005084423 @default.
- W4200376552 creator A5007500797 @default.
- W4200376552 creator A5024110002 @default.
- W4200376552 creator A5033670308 @default.
- W4200376552 creator A5038907917 @default.
- W4200376552 creator A5047257043 @default.
- W4200376552 creator A5065194313 @default.
- W4200376552 creator A5066877556 @default.
- W4200376552 creator A5067155423 @default.
- W4200376552 date "2021-12-13" @default.
- W4200376552 modified "2023-10-18" @default.
- W4200376552 title "Lesion Segmentation Framework Based on Convolutional Neural Networks with Dual Attention Mechanism" @default.
- W4200376552 cites W1501531539 @default.
- W4200376552 cites W2124351162 @default.
- W4200376552 cites W2168804568 @default.
- W4200376552 cites W2326289026 @default.
- W4200376552 cites W2412782625 @default.
- W4200376552 cites W2509591188 @default.
- W4200376552 cites W2520861906 @default.
- W4200376552 cites W2581572661 @default.
- W4200376552 cites W2582553469 @default.
- W4200376552 cites W2590822257 @default.
- W4200376552 cites W2592160412 @default.
- W4200376552 cites W2594785588 @default.
- W4200376552 cites W2625158242 @default.
- W4200376552 cites W2739250163 @default.
- W4200376552 cites W2774899198 @default.
- W4200376552 cites W2790201703 @default.
- W4200376552 cites W2800791174 @default.
- W4200376552 cites W2804847616 @default.
- W4200376552 cites W2897135094 @default.
- W4200376552 cites W2900806287 @default.
- W4200376552 cites W2903718489 @default.
- W4200376552 cites W2911558038 @default.
- W4200376552 cites W2928133111 @default.
- W4200376552 cites W2940740645 @default.
- W4200376552 cites W2947263797 @default.
- W4200376552 cites W2963521811 @default.
- W4200376552 cites W2963881378 @default.
- W4200376552 cites W2994026422 @default.
- W4200376552 cites W3025800305 @default.
- W4200376552 cites W3046554305 @default.
- W4200376552 cites W3090920939 @default.
- W4200376552 cites W3109466111 @default.
- W4200376552 cites W3131352164 @default.
- W4200376552 cites W3137014685 @default.
- W4200376552 cites W3164008977 @default.
- W4200376552 cites W3212436340 @default.
- W4200376552 cites W639708223 @default.
- W4200376552 doi "https://doi.org/10.3390/electronics10243103" @default.
- W4200376552 hasPublicationYear "2021" @default.
- W4200376552 type Work @default.
- W4200376552 citedByCount "2" @default.
- W4200376552 countsByYear W42003765522022 @default.
- W4200376552 crossrefType "journal-article" @default.
- W4200376552 hasAuthorship W4200376552A5005084423 @default.
- W4200376552 hasAuthorship W4200376552A5007500797 @default.
- W4200376552 hasAuthorship W4200376552A5024110002 @default.
- W4200376552 hasAuthorship W4200376552A5033670308 @default.
- W4200376552 hasAuthorship W4200376552A5038907917 @default.
- W4200376552 hasAuthorship W4200376552A5047257043 @default.
- W4200376552 hasAuthorship W4200376552A5065194313 @default.
- W4200376552 hasAuthorship W4200376552A5066877556 @default.
- W4200376552 hasAuthorship W4200376552A5067155423 @default.
- W4200376552 hasBestOaLocation W42003765521 @default.
- W4200376552 hasConcept C108583219 @default.
- W4200376552 hasConcept C119857082 @default.
- W4200376552 hasConcept C124504099 @default.
- W4200376552 hasConcept C124952713 @default.
- W4200376552 hasConcept C138885662 @default.
- W4200376552 hasConcept C142362112 @default.
- W4200376552 hasConcept C153180895 @default.
- W4200376552 hasConcept C154945302 @default.
- W4200376552 hasConcept C2776401178 @default.
- W4200376552 hasConcept C2780980858 @default.
- W4200376552 hasConcept C31972630 @default.
- W4200376552 hasConcept C41008148 @default.
- W4200376552 hasConcept C41895202 @default.
- W4200376552 hasConcept C50644808 @default.
- W4200376552 hasConcept C63584917 @default.
- W4200376552 hasConcept C81363708 @default.
- W4200376552 hasConcept C89600930 @default.
- W4200376552 hasConceptScore W4200376552C108583219 @default.
- W4200376552 hasConceptScore W4200376552C119857082 @default.
- W4200376552 hasConceptScore W4200376552C124504099 @default.
- W4200376552 hasConceptScore W4200376552C124952713 @default.
- W4200376552 hasConceptScore W4200376552C138885662 @default.
- W4200376552 hasConceptScore W4200376552C142362112 @default.
- W4200376552 hasConceptScore W4200376552C153180895 @default.
- W4200376552 hasConceptScore W4200376552C154945302 @default.
- W4200376552 hasConceptScore W4200376552C2776401178 @default.
- W4200376552 hasConceptScore W4200376552C2780980858 @default.
- W4200376552 hasConceptScore W4200376552C31972630 @default.
- W4200376552 hasConceptScore W4200376552C41008148 @default.
- W4200376552 hasConceptScore W4200376552C41895202 @default.
- W4200376552 hasConceptScore W4200376552C50644808 @default.