Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200380400> ?p ?o ?g. }
- W4200380400 endingPage "301" @default.
- W4200380400 startingPage "285" @default.
- W4200380400 abstract "Abstract The accumulated remote sensing data of altimeters and scatterometers have provided new opportunities for ocean state forecasting and have improved our knowledge of ocean–atmosphere exchanges. Studies on multivariate, multistep, spatiotemporal sequence forecasts of sea level anomalies (SLA) for different modalities, however, remain problematic. In this paper, we present a novel hybrid and multivariate deep neural network, named HMnet3, which can be used for SLA forecasting in the South China Sea (SCS). First, a spatiotemporal sequence forecasting network is trained by an improved convolutional long short-term memory (ConvLSTM) network using a channelwise attention mechanism and multivariate data from 1993 to 2015. Then a time series forecasting network is trained by an improved long short-term memory (LSTM) network, which is realized by ensemble empirical mode decomposition (EEMD). Finally, the two networks are combined by a successive correction method to produce SLA forecasts for lead times of up to 15 days, with a special focus on the open sea and coastal regions of the SCS. During the testing period of 2016–18, the performance of HMnet3 with sea surface temperature anomaly (SSTA), wind speed anomaly (SPDA), and SLA data is much better than those of state-of-the-art dynamic and statistical (ConvLSTM, persistence, and climatology) forecast models. Stricter testbeds for trial simulation experiments with real-time datasets are investigated, where the eddy classification metrics of HMnet3 are favorable for all properties, especially for those of small-scale eddies." @default.
- W4200380400 created "2021-12-31" @default.
- W4200380400 creator A5031482158 @default.
- W4200380400 creator A5032098600 @default.
- W4200380400 creator A5048565254 @default.
- W4200380400 creator A5054285017 @default.
- W4200380400 creator A5063794550 @default.
- W4200380400 creator A5068324507 @default.
- W4200380400 creator A5071489179 @default.
- W4200380400 date "2022-03-01" @default.
- W4200380400 modified "2023-09-29" @default.
- W4200380400 title "A Hybrid Multivariate Deep Learning Network for Multistep Ahead Sea Level Anomaly Forecasting" @default.
- W4200380400 cites W1015475826 @default.
- W4200380400 cites W1789155650 @default.
- W4200380400 cites W1964651507 @default.
- W4200380400 cites W1966450053 @default.
- W4200380400 cites W1966787984 @default.
- W4200380400 cites W1970288396 @default.
- W4200380400 cites W1983364832 @default.
- W4200380400 cites W1993231420 @default.
- W4200380400 cites W2001785840 @default.
- W4200380400 cites W2022378725 @default.
- W4200380400 cites W2034054561 @default.
- W4200380400 cites W2034438491 @default.
- W4200380400 cites W2045935471 @default.
- W4200380400 cites W2049842478 @default.
- W4200380400 cites W2054061975 @default.
- W4200380400 cites W2054982169 @default.
- W4200380400 cites W2058935082 @default.
- W4200380400 cites W2059734998 @default.
- W4200380400 cites W2083763170 @default.
- W4200380400 cites W2091196667 @default.
- W4200380400 cites W2094139984 @default.
- W4200380400 cites W2096175771 @default.
- W4200380400 cites W2099461686 @default.
- W4200380400 cites W2112796928 @default.
- W4200380400 cites W2119288237 @default.
- W4200380400 cites W2159536695 @default.
- W4200380400 cites W2171858154 @default.
- W4200380400 cites W2430240455 @default.
- W4200380400 cites W2607470162 @default.
- W4200380400 cites W2792413338 @default.
- W4200380400 cites W2804943168 @default.
- W4200380400 cites W2810275709 @default.
- W4200380400 cites W2897489519 @default.
- W4200380400 cites W2903213558 @default.
- W4200380400 cites W2908155528 @default.
- W4200380400 cites W2910444523 @default.
- W4200380400 cites W2930664421 @default.
- W4200380400 cites W2940598365 @default.
- W4200380400 cites W2944681516 @default.
- W4200380400 cites W2953266605 @default.
- W4200380400 cites W2973162043 @default.
- W4200380400 cites W2973731563 @default.
- W4200380400 cites W2995015263 @default.
- W4200380400 cites W2995676548 @default.
- W4200380400 cites W3042493930 @default.
- W4200380400 cites W3047626512 @default.
- W4200380400 cites W3081606079 @default.
- W4200380400 cites W3101544609 @default.
- W4200380400 cites W3105919389 @default.
- W4200380400 cites W4298295248 @default.
- W4200380400 doi "https://doi.org/10.1175/jtech-d-21-0043.1" @default.
- W4200380400 hasPublicationYear "2022" @default.
- W4200380400 type Work @default.
- W4200380400 citedByCount "5" @default.
- W4200380400 countsByYear W42003804002022 @default.
- W4200380400 countsByYear W42003804002023 @default.
- W4200380400 crossrefType "journal-article" @default.
- W4200380400 hasAuthorship W4200380400A5031482158 @default.
- W4200380400 hasAuthorship W4200380400A5032098600 @default.
- W4200380400 hasAuthorship W4200380400A5048565254 @default.
- W4200380400 hasAuthorship W4200380400A5054285017 @default.
- W4200380400 hasAuthorship W4200380400A5063794550 @default.
- W4200380400 hasAuthorship W4200380400A5068324507 @default.
- W4200380400 hasAuthorship W4200380400A5071489179 @default.
- W4200380400 hasBestOaLocation W42003804001 @default.
- W4200380400 hasConcept C108583219 @default.
- W4200380400 hasConcept C119857082 @default.
- W4200380400 hasConcept C121332964 @default.
- W4200380400 hasConcept C124101348 @default.
- W4200380400 hasConcept C127313418 @default.
- W4200380400 hasConcept C12997251 @default.
- W4200380400 hasConcept C134097258 @default.
- W4200380400 hasConcept C154945302 @default.
- W4200380400 hasConcept C161584116 @default.
- W4200380400 hasConcept C170061395 @default.
- W4200380400 hasConcept C26873012 @default.
- W4200380400 hasConcept C41008148 @default.
- W4200380400 hasConcept C49204034 @default.
- W4200380400 hasConcept C50644808 @default.
- W4200380400 hasConceptScore W4200380400C108583219 @default.
- W4200380400 hasConceptScore W4200380400C119857082 @default.
- W4200380400 hasConceptScore W4200380400C121332964 @default.
- W4200380400 hasConceptScore W4200380400C124101348 @default.
- W4200380400 hasConceptScore W4200380400C127313418 @default.
- W4200380400 hasConceptScore W4200380400C12997251 @default.
- W4200380400 hasConceptScore W4200380400C134097258 @default.