Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200380963> ?p ?o ?g. }
- W4200380963 endingPage "111817" @default.
- W4200380963 startingPage "111817" @default.
- W4200380963 abstract "Distance measurement (also known as similarity measurement) is used to evaluate pairwise similarities between data samples. It has been widely used in diverse building informatics research and applications to classify or cluster massive building data with the aim of improving prediction accuracy, identifying operation patterns, benchmarking and diagnosing building performance, etc. Various distance measures have been adopted to measure the distance/similarity of building data. However, the intrinsic complexity and diversity of building operational data bring considerable difficulties to the selection of a suitable distance measure for a specific task. There is a strong and urgent need for a comprehensive review and systematic comparison of existing distance measures in building informatics. This study provides a comprehensive review of various distance measures and their applications in building operational data analysis. A systematic comparison is undertaken based on two typical tasks relying on building informatics, i.e., building energy usage pattern recognition, and clustering-based weather data segmentation for the customized development of building energy prediction models. Nine widely adopted distance measures have been reviewed and compared, including Euclidean distance, Chebyshev distance, Manhattan distance, Mahalanobis distance, Hausdorff distance, Pearson correlation distance, Dynamic Time Warping, Edit distance on Real Sequence, and Cosine distance. Novel internal and external clustering validation approaches based on the cross-test and prediction accuracy are proposed and adopted to compare the clustering performance. The results in case studies showed that weather data clustering using the Cosine distance and Pearson correlation distance helps to obtain better energy prediction results in terms of MAPE (13.22% and 12.91%, respectively) than the commonly-used Euclidean distance (13.99%). The results also revealed that better clustering performance does not necessarily lead to higher prediction accuracy. The research results and insights obtained are valuable to guide distance-based research in building informatics." @default.
- W4200380963 created "2021-12-31" @default.
- W4200380963 creator A5026475770 @default.
- W4200380963 creator A5037083684 @default.
- W4200380963 creator A5074200075 @default.
- W4200380963 creator A5075429650 @default.
- W4200380963 date "2022-03-01" @default.
- W4200380963 modified "2023-10-13" @default.
- W4200380963 title "Distance measures in building informatics: An in-depth assessment through typical tasks in building energy management" @default.
- W4200380963 cites W1793352132 @default.
- W4200380963 cites W1901616594 @default.
- W4200380963 cites W1968010112 @default.
- W4200380963 cites W1996118086 @default.
- W4200380963 cites W2008084603 @default.
- W4200380963 cites W2026973848 @default.
- W4200380963 cites W2029064186 @default.
- W4200380963 cites W2043803919 @default.
- W4200380963 cites W2050299018 @default.
- W4200380963 cites W2052531283 @default.
- W4200380963 cites W2064860826 @default.
- W4200380963 cites W2075843680 @default.
- W4200380963 cites W2098759488 @default.
- W4200380963 cites W2106595237 @default.
- W4200380963 cites W2113952909 @default.
- W4200380963 cites W2128160875 @default.
- W4200380963 cites W2132820397 @default.
- W4200380963 cites W2152510616 @default.
- W4200380963 cites W2422808452 @default.
- W4200380963 cites W2461280309 @default.
- W4200380963 cites W2470281051 @default.
- W4200380963 cites W2471829290 @default.
- W4200380963 cites W2538688430 @default.
- W4200380963 cites W2552928059 @default.
- W4200380963 cites W2562985521 @default.
- W4200380963 cites W2584218285 @default.
- W4200380963 cites W2598527303 @default.
- W4200380963 cites W2604389850 @default.
- W4200380963 cites W2793410930 @default.
- W4200380963 cites W2800455430 @default.
- W4200380963 cites W2801523967 @default.
- W4200380963 cites W2890188229 @default.
- W4200380963 cites W2901127394 @default.
- W4200380963 cites W2912900127 @default.
- W4200380963 cites W2913544733 @default.
- W4200380963 cites W2914786494 @default.
- W4200380963 cites W2919553970 @default.
- W4200380963 cites W2921827055 @default.
- W4200380963 cites W2965277388 @default.
- W4200380963 cites W2969410971 @default.
- W4200380963 cites W2988244882 @default.
- W4200380963 cites W2991206699 @default.
- W4200380963 cites W2993749047 @default.
- W4200380963 cites W3000088815 @default.
- W4200380963 cites W3011339269 @default.
- W4200380963 cites W3014692329 @default.
- W4200380963 cites W3043808834 @default.
- W4200380963 cites W3086505308 @default.
- W4200380963 cites W3088382784 @default.
- W4200380963 cites W3094680454 @default.
- W4200380963 cites W3122220845 @default.
- W4200380963 cites W4210880854 @default.
- W4200380963 doi "https://doi.org/10.1016/j.enbuild.2021.111817" @default.
- W4200380963 hasPublicationYear "2022" @default.
- W4200380963 type Work @default.
- W4200380963 citedByCount "8" @default.
- W4200380963 countsByYear W42003809632023 @default.
- W4200380963 crossrefType "journal-article" @default.
- W4200380963 hasAuthorship W4200380963A5026475770 @default.
- W4200380963 hasAuthorship W4200380963A5037083684 @default.
- W4200380963 hasAuthorship W4200380963A5074200075 @default.
- W4200380963 hasAuthorship W4200380963A5075429650 @default.
- W4200380963 hasConcept C103278499 @default.
- W4200380963 hasConcept C105795698 @default.
- W4200380963 hasConcept C111208986 @default.
- W4200380963 hasConcept C11413529 @default.
- W4200380963 hasConcept C115961682 @default.
- W4200380963 hasConcept C120174047 @default.
- W4200380963 hasConcept C124101348 @default.
- W4200380963 hasConcept C127413603 @default.
- W4200380963 hasConcept C141898687 @default.
- W4200380963 hasConcept C144133560 @default.
- W4200380963 hasConcept C154945302 @default.
- W4200380963 hasConcept C162853370 @default.
- W4200380963 hasConcept C176217482 @default.
- W4200380963 hasConcept C184898388 @default.
- W4200380963 hasConcept C1921717 @default.
- W4200380963 hasConcept C21547014 @default.
- W4200380963 hasConcept C24145651 @default.
- W4200380963 hasConcept C2639959 @default.
- W4200380963 hasConcept C2780009758 @default.
- W4200380963 hasConcept C33923547 @default.
- W4200380963 hasConcept C41008148 @default.
- W4200380963 hasConcept C55078378 @default.
- W4200380963 hasConcept C73555534 @default.
- W4200380963 hasConcept C82668687 @default.
- W4200380963 hasConcept C86251818 @default.
- W4200380963 hasConcept C88516994 @default.
- W4200380963 hasConcept C92835128 @default.