Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200382831> ?p ?o ?g. }
- W4200382831 endingPage "130274" @default.
- W4200382831 startingPage "130274" @default.
- W4200382831 abstract "With the increase of natural gas in the world's energy consumption, the efficient and reliable management of natural gas pipeline networks is becoming even more important than before. In recent years, Demand Response (DR) is considered an effective approach for cleaner production and economic strategy, by introducing the participation of customers (CUs). This paper proposes a novel DR method for predictive management in multi-level natural gas markets with different stakeholders. This method is able to make a better trade-off among supplier's profits, gas demand volatility and CU satisfaction. This method includes three parts: dynamic pricing model, intelligent decision making and data-driven demand forecasting. A Markov decision process-based model is developed to illustrate the process of dynamical optimizing energy prices. Then, deep learning and reinforcement learning are integrated to efficiently solve the sequential decision-making problem, based on the physics constraints of natural gas pipeline networks. Besides, to realize the function of predictive optimization, an energy demand forecasting model is developed based on the deep recurrent neural network model. The proposed dynamic pricing method is able to optimize the pricing strategies in accordance to the demand patterns, and dynamically improve the system stability and energy efficiency. Finally, we apply the developed method to a natural gas network with relatively complex topology and different CUs. The results indicate that the proposed method can achieve the targets of peak shaving and valley filling under different pricing periods. Besides, the sensitivity analysis of the critical parameters in the dynamic pricing model is analyzed in detail, which can give a solid criterion for ensuring the effectiveness of this framework." @default.
- W4200382831 created "2021-12-31" @default.
- W4200382831 creator A5001260666 @default.
- W4200382831 creator A5012431211 @default.
- W4200382831 creator A5037696356 @default.
- W4200382831 creator A5041649815 @default.
- W4200382831 creator A5045925603 @default.
- W4200382831 creator A5066716873 @default.
- W4200382831 creator A5076465406 @default.
- W4200382831 creator A5091161457 @default.
- W4200382831 date "2022-02-01" @default.
- W4200382831 modified "2023-10-17" @default.
- W4200382831 title "A deep reinforcement learning-based method for predictive management of demand response in natural gas pipeline networks" @default.
- W4200382831 cites W1919544272 @default.
- W4200382831 cites W1980380034 @default.
- W4200382831 cites W1982262386 @default.
- W4200382831 cites W2022185333 @default.
- W4200382831 cites W2023387756 @default.
- W4200382831 cites W2042986815 @default.
- W4200382831 cites W2073614774 @default.
- W4200382831 cites W2077479737 @default.
- W4200382831 cites W2124206201 @default.
- W4200382831 cites W2239350357 @default.
- W4200382831 cites W2278589437 @default.
- W4200382831 cites W2343935207 @default.
- W4200382831 cites W2493847016 @default.
- W4200382831 cites W2516150629 @default.
- W4200382831 cites W2598075689 @default.
- W4200382831 cites W2613327733 @default.
- W4200382831 cites W2767874148 @default.
- W4200382831 cites W2783134749 @default.
- W4200382831 cites W2790957113 @default.
- W4200382831 cites W2795276745 @default.
- W4200382831 cites W2796358696 @default.
- W4200382831 cites W2797732511 @default.
- W4200382831 cites W2801441281 @default.
- W4200382831 cites W2809874778 @default.
- W4200382831 cites W2811101023 @default.
- W4200382831 cites W2888954216 @default.
- W4200382831 cites W2895226249 @default.
- W4200382831 cites W2901645090 @default.
- W4200382831 cites W2911279841 @default.
- W4200382831 cites W2921732122 @default.
- W4200382831 cites W2922383488 @default.
- W4200382831 cites W2936616423 @default.
- W4200382831 cites W2945674393 @default.
- W4200382831 cites W2963168828 @default.
- W4200382831 cites W2980706627 @default.
- W4200382831 cites W2984509118 @default.
- W4200382831 cites W2995319762 @default.
- W4200382831 cites W2998449485 @default.
- W4200382831 cites W3033909682 @default.
- W4200382831 cites W3034276025 @default.
- W4200382831 cites W3043235078 @default.
- W4200382831 cites W3082637145 @default.
- W4200382831 cites W3092109129 @default.
- W4200382831 cites W3094142992 @default.
- W4200382831 cites W3119580723 @default.
- W4200382831 cites W3144302749 @default.
- W4200382831 cites W2949323890 @default.
- W4200382831 doi "https://doi.org/10.1016/j.jclepro.2021.130274" @default.
- W4200382831 hasPublicationYear "2022" @default.
- W4200382831 type Work @default.
- W4200382831 citedByCount "8" @default.
- W4200382831 countsByYear W42003828312022 @default.
- W4200382831 countsByYear W42003828312023 @default.
- W4200382831 crossrefType "journal-article" @default.
- W4200382831 hasAuthorship W4200382831A5001260666 @default.
- W4200382831 hasAuthorship W4200382831A5012431211 @default.
- W4200382831 hasAuthorship W4200382831A5037696356 @default.
- W4200382831 hasAuthorship W4200382831A5041649815 @default.
- W4200382831 hasAuthorship W4200382831A5045925603 @default.
- W4200382831 hasAuthorship W4200382831A5066716873 @default.
- W4200382831 hasAuthorship W4200382831A5076465406 @default.
- W4200382831 hasAuthorship W4200382831A5091161457 @default.
- W4200382831 hasConcept C105795698 @default.
- W4200382831 hasConcept C106159729 @default.
- W4200382831 hasConcept C106189395 @default.
- W4200382831 hasConcept C119599485 @default.
- W4200382831 hasConcept C126255220 @default.
- W4200382831 hasConcept C127413603 @default.
- W4200382831 hasConcept C154945302 @default.
- W4200382831 hasConcept C159886148 @default.
- W4200382831 hasConcept C162324750 @default.
- W4200382831 hasConcept C175309249 @default.
- W4200382831 hasConcept C175444787 @default.
- W4200382831 hasConcept C199360897 @default.
- W4200382831 hasConcept C206658404 @default.
- W4200382831 hasConcept C2779391423 @default.
- W4200382831 hasConcept C2779438525 @default.
- W4200382831 hasConcept C33923547 @default.
- W4200382831 hasConcept C41008148 @default.
- W4200382831 hasConcept C42475967 @default.
- W4200382831 hasConcept C43521106 @default.
- W4200382831 hasConcept C50644808 @default.
- W4200382831 hasConcept C548081761 @default.
- W4200382831 hasConcept C59427239 @default.
- W4200382831 hasConcept C87717796 @default.