Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200388410> ?p ?o ?g. }
- W4200388410 endingPage "2379" @default.
- W4200388410 startingPage "2379" @default.
- W4200388410 abstract "Parkinson's disease (PD) is a common neurodegenerative disease that has a significant impact on people's lives. Early diagnosis is imperative since proper treatment stops the disease's progression. With the rapid development of CAD techniques, there have been numerous applications of computer-aided diagnostic (CAD) techniques in the diagnosis of PD. In recent years, image fusion has been applied in various fields and is valuable in medical diagnosis. This paper mainly adopts a multi-focus image fusion method primarily based on deep convolutional neural networks to fuse magnetic resonance images (MRI) and positron emission tomography (PET) neural photographs into multi-modal images. Additionally, the study selected Alexnet, Densenet, ResNeSt, and Efficientnet neural networks to classify the single-modal MRI dataset and the multi-modal dataset. The test accuracy rates of the single-modal MRI dataset are 83.31%, 87.76%, 86.37%, and 86.44% on the Alexnet, Densenet, ResNeSt, and Efficientnet, respectively. Moreover, the test accuracy rates of the multi-modal fusion dataset on the Alexnet, Densenet, ResNeSt, and Efficientnet are 90.52%, 97.19%, 94.15%, and 93.39%. As per all four networks discussed above, it can be concluded that the test results for the multi-modal dataset are better than those for the single-modal MRI dataset. The experimental results showed that the multi-focus image fusion method according to deep learning can enhance the accuracy of PD image classification." @default.
- W4200388410 created "2021-12-31" @default.
- W4200388410 creator A5014918031 @default.
- W4200388410 creator A5017901661 @default.
- W4200388410 creator A5045927598 @default.
- W4200388410 creator A5059964480 @default.
- W4200388410 creator A5060756283 @default.
- W4200388410 creator A5068919274 @default.
- W4200388410 creator A5075717701 @default.
- W4200388410 date "2021-12-17" @default.
- W4200388410 modified "2023-09-23" @default.
- W4200388410 title "Multi-Focus Image Fusion Based on Convolution Neural Network for Parkinson’s Disease Image Classification" @default.
- W4200388410 cites W1969139527 @default.
- W4200388410 cites W1991344285 @default.
- W4200388410 cites W2000730441 @default.
- W4200388410 cites W2002806484 @default.
- W4200388410 cites W2025514142 @default.
- W4200388410 cites W2040212643 @default.
- W4200388410 cites W2140555955 @default.
- W4200388410 cites W2146353910 @default.
- W4200388410 cites W2156597094 @default.
- W4200388410 cites W2158143121 @default.
- W4200388410 cites W2281923782 @default.
- W4200388410 cites W2322916844 @default.
- W4200388410 cites W2396601029 @default.
- W4200388410 cites W2474462684 @default.
- W4200388410 cites W2559870345 @default.
- W4200388410 cites W2604383919 @default.
- W4200388410 cites W2767512561 @default.
- W4200388410 cites W2923463496 @default.
- W4200388410 cites W2953498879 @default.
- W4200388410 cites W2966830532 @default.
- W4200388410 cites W3005873293 @default.
- W4200388410 cites W3014773964 @default.
- W4200388410 cites W3036922081 @default.
- W4200388410 cites W3048731797 @default.
- W4200388410 cites W3093099598 @default.
- W4200388410 cites W3132306383 @default.
- W4200388410 cites W3136763234 @default.
- W4200388410 cites W3172595589 @default.
- W4200388410 cites W4226178544 @default.
- W4200388410 doi "https://doi.org/10.3390/diagnostics11122379" @default.
- W4200388410 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34943615" @default.
- W4200388410 hasPublicationYear "2021" @default.
- W4200388410 type Work @default.
- W4200388410 citedByCount "5" @default.
- W4200388410 countsByYear W42003884102022 @default.
- W4200388410 countsByYear W42003884102023 @default.
- W4200388410 crossrefType "journal-article" @default.
- W4200388410 hasAuthorship W4200388410A5014918031 @default.
- W4200388410 hasAuthorship W4200388410A5017901661 @default.
- W4200388410 hasAuthorship W4200388410A5045927598 @default.
- W4200388410 hasAuthorship W4200388410A5059964480 @default.
- W4200388410 hasAuthorship W4200388410A5060756283 @default.
- W4200388410 hasAuthorship W4200388410A5068919274 @default.
- W4200388410 hasAuthorship W4200388410A5075717701 @default.
- W4200388410 hasBestOaLocation W42003884101 @default.
- W4200388410 hasConcept C108583219 @default.
- W4200388410 hasConcept C115961682 @default.
- W4200388410 hasConcept C119599485 @default.
- W4200388410 hasConcept C120665830 @default.
- W4200388410 hasConcept C121332964 @default.
- W4200388410 hasConcept C126838900 @default.
- W4200388410 hasConcept C127413603 @default.
- W4200388410 hasConcept C138885662 @default.
- W4200388410 hasConcept C141353440 @default.
- W4200388410 hasConcept C142724271 @default.
- W4200388410 hasConcept C143409427 @default.
- W4200388410 hasConcept C153180895 @default.
- W4200388410 hasConcept C154945302 @default.
- W4200388410 hasConcept C158525013 @default.
- W4200388410 hasConcept C185592680 @default.
- W4200388410 hasConcept C188027245 @default.
- W4200388410 hasConcept C192209626 @default.
- W4200388410 hasConcept C194789388 @default.
- W4200388410 hasConcept C199639397 @default.
- W4200388410 hasConcept C2779134260 @default.
- W4200388410 hasConcept C2779734285 @default.
- W4200388410 hasConcept C41008148 @default.
- W4200388410 hasConcept C41895202 @default.
- W4200388410 hasConcept C45347329 @default.
- W4200388410 hasConcept C50644808 @default.
- W4200388410 hasConcept C69744172 @default.
- W4200388410 hasConcept C71139939 @default.
- W4200388410 hasConcept C71924100 @default.
- W4200388410 hasConcept C81363708 @default.
- W4200388410 hasConceptScore W4200388410C108583219 @default.
- W4200388410 hasConceptScore W4200388410C115961682 @default.
- W4200388410 hasConceptScore W4200388410C119599485 @default.
- W4200388410 hasConceptScore W4200388410C120665830 @default.
- W4200388410 hasConceptScore W4200388410C121332964 @default.
- W4200388410 hasConceptScore W4200388410C126838900 @default.
- W4200388410 hasConceptScore W4200388410C127413603 @default.
- W4200388410 hasConceptScore W4200388410C138885662 @default.
- W4200388410 hasConceptScore W4200388410C141353440 @default.
- W4200388410 hasConceptScore W4200388410C142724271 @default.
- W4200388410 hasConceptScore W4200388410C143409427 @default.
- W4200388410 hasConceptScore W4200388410C153180895 @default.