Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200391618> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4200391618 abstract "Medical image segmentation and classification algorithms are commonly used in clinical applications. Several automatic and semiautomatic segmentation methods were used for extracting veins and arteries on transverse and longitudinal medical images. Recently, the use of medical image processing and analysis tools improved giant cell arteries (GCA) detection and diagnosis using patient specific medical imaging. In this chapter, we proposed several image processing and analysis algorithms for detecting and quantifying the GCA from patient medical images. The chapter introduced the connected threshold and region growing segmentation approaches on two case studies with temporal arteritis using ultrasound (US) and magnetic resonance imaging (MRI) imaging modalities extracted from the Radiopedia Dataset. The GCA detection procedure was developed using the 3D Slicer Medical Imaging Interaction software as a fast prototyping open-source framework. GCA detection passes through two main procedures: The pre-processing phase, in which we improve and enhances the quality of an image after removing the noise, irrelevant and unwanted parts of the scanned image by the use of filtering techniques, and contrast enhancement methods; and the processing phase which includes all the steps of processing, which are used for identification, segmentation, measurement, and quantification of GCA. The semi-automatic interaction is involved in the entire segmentation process for finding the segmentation parameters. The results of the two case studies show that the proposed approach managed to detect and quantify the GCA region of interest. Hence, the proposed algorithm is efficient to perform complete, and accurate extraction of temporal arteries. The proposed semi-automatic segmentation method can be used for studies focusing on three-dimensional visualization and volumetric quantification of Giant Cell Arteritis." @default.
- W4200391618 created "2021-12-31" @default.
- W4200391618 creator A5007844684 @default.
- W4200391618 creator A5007996298 @default.
- W4200391618 creator A5043966066 @default.
- W4200391618 creator A5049435686 @default.
- W4200391618 creator A5068417133 @default.
- W4200391618 date "2022-10-26" @default.
- W4200391618 modified "2023-10-14" @default.
- W4200391618 title "Medical Image Processing and Analysis Techniques for Detecting Giant Cell Arteritis" @default.
- W4200391618 cites W1188449285 @default.
- W4200391618 cites W2026616100 @default.
- W4200391618 cites W2063322369 @default.
- W4200391618 cites W2064126663 @default.
- W4200391618 cites W2080495810 @default.
- W4200391618 cites W2088213672 @default.
- W4200391618 cites W2146119217 @default.
- W4200391618 cites W2503404324 @default.
- W4200391618 cites W2542009849 @default.
- W4200391618 cites W2732704405 @default.
- W4200391618 cites W2785039038 @default.
- W4200391618 cites W2785495975 @default.
- W4200391618 cites W2789945099 @default.
- W4200391618 cites W2794842957 @default.
- W4200391618 cites W2888746210 @default.
- W4200391618 cites W2954943567 @default.
- W4200391618 cites W2978332317 @default.
- W4200391618 cites W3027263496 @default.
- W4200391618 cites W3037582100 @default.
- W4200391618 cites W3044564040 @default.
- W4200391618 cites W3081225194 @default.
- W4200391618 doi "https://doi.org/10.5772/intechopen.97161" @default.
- W4200391618 hasPublicationYear "2022" @default.
- W4200391618 type Work @default.
- W4200391618 citedByCount "0" @default.
- W4200391618 crossrefType "book-chapter" @default.
- W4200391618 hasAuthorship W4200391618A5007844684 @default.
- W4200391618 hasAuthorship W4200391618A5007996298 @default.
- W4200391618 hasAuthorship W4200391618A5043966066 @default.
- W4200391618 hasAuthorship W4200391618A5049435686 @default.
- W4200391618 hasAuthorship W4200391618A5068417133 @default.
- W4200391618 hasBestOaLocation W42003916181 @default.
- W4200391618 hasConcept C115961682 @default.
- W4200391618 hasConcept C124504099 @default.
- W4200391618 hasConcept C142724271 @default.
- W4200391618 hasConcept C153180895 @default.
- W4200391618 hasConcept C154945302 @default.
- W4200391618 hasConcept C2776015282 @default.
- W4200391618 hasConcept C2776712624 @default.
- W4200391618 hasConcept C2779134260 @default.
- W4200391618 hasConcept C31601959 @default.
- W4200391618 hasConcept C31972630 @default.
- W4200391618 hasConcept C41008148 @default.
- W4200391618 hasConcept C71924100 @default.
- W4200391618 hasConcept C89600930 @default.
- W4200391618 hasConcept C9417928 @default.
- W4200391618 hasConceptScore W4200391618C115961682 @default.
- W4200391618 hasConceptScore W4200391618C124504099 @default.
- W4200391618 hasConceptScore W4200391618C142724271 @default.
- W4200391618 hasConceptScore W4200391618C153180895 @default.
- W4200391618 hasConceptScore W4200391618C154945302 @default.
- W4200391618 hasConceptScore W4200391618C2776015282 @default.
- W4200391618 hasConceptScore W4200391618C2776712624 @default.
- W4200391618 hasConceptScore W4200391618C2779134260 @default.
- W4200391618 hasConceptScore W4200391618C31601959 @default.
- W4200391618 hasConceptScore W4200391618C31972630 @default.
- W4200391618 hasConceptScore W4200391618C41008148 @default.
- W4200391618 hasConceptScore W4200391618C71924100 @default.
- W4200391618 hasConceptScore W4200391618C89600930 @default.
- W4200391618 hasConceptScore W4200391618C9417928 @default.
- W4200391618 hasLocation W42003916181 @default.
- W4200391618 hasLocation W42003916182 @default.
- W4200391618 hasOpenAccess W4200391618 @default.
- W4200391618 hasPrimaryLocation W42003916181 @default.
- W4200391618 hasRelatedWork W1669643531 @default.
- W4200391618 hasRelatedWork W1982826852 @default.
- W4200391618 hasRelatedWork W2005437358 @default.
- W4200391618 hasRelatedWork W2008656436 @default.
- W4200391618 hasRelatedWork W2023558673 @default.
- W4200391618 hasRelatedWork W2110230079 @default.
- W4200391618 hasRelatedWork W2134924024 @default.
- W4200391618 hasRelatedWork W2517104666 @default.
- W4200391618 hasRelatedWork W2613186388 @default.
- W4200391618 hasRelatedWork W1967061043 @default.
- W4200391618 isParatext "false" @default.
- W4200391618 isRetracted "false" @default.
- W4200391618 workType "book-chapter" @default.