Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200395890> ?p ?o ?g. }
- W4200395890 endingPage "104675" @default.
- W4200395890 startingPage "104675" @default.
- W4200395890 abstract "To develop and evaluate the colposcopy based deep learning model using all kinds of cervical images for cervical screening, and investigate the synergetic benefits of the colposcopy, the cytology test, and the HPV test for improving cervical screening performance.This study consisted of 2160 women who underwent cervical screening, there were 442 cases with the histopathological confirmed high-grade squamous intraepithelial lesion (HSIL) or cancer, and the remained 1718 women were controls. Three kinds of cervical images were acquired from colposcopy including the saline image of cervix after saline irrigation, the acetic acid image of cervix after applying acetic acid solution, and the iodine image of cervix after applying Lugol's iodine solution. Each kind of image was used to build a single-image based deep learning model by the VGG-16 convolutional neural network, respectively. A multiple-images based deep learning model was built using multivariable logistic regression (MLR) by combining the single-image based models. The performance of the visual inspection was also obtained. The results of the cytology test and HPV test were used to build a Cytology-HPV joint diagnostic model by MLR. Finally, a cross-modal integrated model was built using MLR by combining the multiple-images based deep learning model, the cytology test results, and the HPV test results. The performances of models were tested in an independent test set using the area under the receiver operating characteristic curve (AUC).The saline image, acetic acid image, and iodine image based deep learning models had AUC of 0.760, 0.791, and 0.840. The multiple-images based deep learning model achieved an improved AUC of 0.845. The AUC of the visual inspection was 0.751. The Cytology-HPV joint diagnostic model had an AUC of 0.837, which was higher than the cytology test (AUC = 0.749) and the HPV test (AUC = 0.742). The cross-modal integrated model achieved the best performance with AUC of 0.921.Combining all kinds of cervical images were benefit for improving the performance of the colposcopy based deep learning model, and more accurate cervical screening could be achieved by incorporating the colposcopy based deep learning model, the cytology test results, and the HPV test results." @default.
- W4200395890 created "2021-12-31" @default.
- W4200395890 creator A5008210283 @default.
- W4200395890 creator A5015305185 @default.
- W4200395890 creator A5017353282 @default.
- W4200395890 creator A5037909738 @default.
- W4200395890 creator A5051390001 @default.
- W4200395890 creator A5051520404 @default.
- W4200395890 creator A5056725845 @default.
- W4200395890 creator A5074960174 @default.
- W4200395890 creator A5085689164 @default.
- W4200395890 creator A5090067113 @default.
- W4200395890 date "2022-03-01" @default.
- W4200395890 modified "2023-10-15" @default.
- W4200395890 title "Deep learning based cervical screening by the cross-modal integration of colposcopy, cytology, and HPV test" @default.
- W4200395890 cites W1979026521 @default.
- W4200395890 cites W2027670630 @default.
- W4200395890 cites W2032775179 @default.
- W4200395890 cites W2039441587 @default.
- W4200395890 cites W2095535209 @default.
- W4200395890 cites W2097457622 @default.
- W4200395890 cites W2111786274 @default.
- W4200395890 cites W2114418380 @default.
- W4200395890 cites W2137973979 @default.
- W4200395890 cites W2152575748 @default.
- W4200395890 cites W2163852430 @default.
- W4200395890 cites W2346443283 @default.
- W4200395890 cites W2559124996 @default.
- W4200395890 cites W2752117457 @default.
- W4200395890 cites W2757972151 @default.
- W4200395890 cites W2759162212 @default.
- W4200395890 cites W2782769512 @default.
- W4200395890 cites W2788633781 @default.
- W4200395890 cites W2803991685 @default.
- W4200395890 cites W2889646458 @default.
- W4200395890 cites W2908716024 @default.
- W4200395890 cites W2946775677 @default.
- W4200395890 cites W2981595148 @default.
- W4200395890 cites W3020989840 @default.
- W4200395890 cites W3030172556 @default.
- W4200395890 cites W3033850868 @default.
- W4200395890 cites W3041871468 @default.
- W4200395890 cites W3045996770 @default.
- W4200395890 cites W3073344571 @default.
- W4200395890 cites W3096061402 @default.
- W4200395890 cites W3111078350 @default.
- W4200395890 doi "https://doi.org/10.1016/j.ijmedinf.2021.104675" @default.
- W4200395890 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34979436" @default.
- W4200395890 hasPublicationYear "2022" @default.
- W4200395890 type Work @default.
- W4200395890 citedByCount "11" @default.
- W4200395890 countsByYear W42003958902022 @default.
- W4200395890 countsByYear W42003958902023 @default.
- W4200395890 crossrefType "journal-article" @default.
- W4200395890 hasAuthorship W4200395890A5008210283 @default.
- W4200395890 hasAuthorship W4200395890A5015305185 @default.
- W4200395890 hasAuthorship W4200395890A5017353282 @default.
- W4200395890 hasAuthorship W4200395890A5037909738 @default.
- W4200395890 hasAuthorship W4200395890A5051390001 @default.
- W4200395890 hasAuthorship W4200395890A5051520404 @default.
- W4200395890 hasAuthorship W4200395890A5056725845 @default.
- W4200395890 hasAuthorship W4200395890A5074960174 @default.
- W4200395890 hasAuthorship W4200395890A5085689164 @default.
- W4200395890 hasAuthorship W4200395890A5090067113 @default.
- W4200395890 hasConcept C121608353 @default.
- W4200395890 hasConcept C126322002 @default.
- W4200395890 hasConcept C142724271 @default.
- W4200395890 hasConcept C154945302 @default.
- W4200395890 hasConcept C18823058 @default.
- W4200395890 hasConcept C2775924586 @default.
- W4200395890 hasConcept C2776117191 @default.
- W4200395890 hasConcept C2777343196 @default.
- W4200395890 hasConcept C2777740455 @default.
- W4200395890 hasConcept C2778220009 @default.
- W4200395890 hasConcept C41008148 @default.
- W4200395890 hasConcept C71924100 @default.
- W4200395890 hasConcept C81363708 @default.
- W4200395890 hasConceptScore W4200395890C121608353 @default.
- W4200395890 hasConceptScore W4200395890C126322002 @default.
- W4200395890 hasConceptScore W4200395890C142724271 @default.
- W4200395890 hasConceptScore W4200395890C154945302 @default.
- W4200395890 hasConceptScore W4200395890C18823058 @default.
- W4200395890 hasConceptScore W4200395890C2775924586 @default.
- W4200395890 hasConceptScore W4200395890C2776117191 @default.
- W4200395890 hasConceptScore W4200395890C2777343196 @default.
- W4200395890 hasConceptScore W4200395890C2777740455 @default.
- W4200395890 hasConceptScore W4200395890C2778220009 @default.
- W4200395890 hasConceptScore W4200395890C41008148 @default.
- W4200395890 hasConceptScore W4200395890C71924100 @default.
- W4200395890 hasConceptScore W4200395890C81363708 @default.
- W4200395890 hasFunder F4320313610 @default.
- W4200395890 hasFunder F4320313895 @default.
- W4200395890 hasFunder F4320321001 @default.
- W4200395890 hasFunder F4320327777 @default.
- W4200395890 hasFunder F4320333596 @default.
- W4200395890 hasFunder F4320335787 @default.
- W4200395890 hasFunder F4320336405 @default.
- W4200395890 hasLocation W42003958901 @default.