Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200395959> ?p ?o ?g. }
- W4200395959 endingPage "3252" @default.
- W4200395959 startingPage "3252" @default.
- W4200395959 abstract "The problem of missing data is a common feature in any study, and a single imputation method is often applied to deal with this problem. The first contribution of this paper is to analyse the empirical performance of some traditional single imputation methods when they are applied to the estimation of the Gini index, a popular measure of inequality used in many studies. Various methods for constructing confidence intervals for the Gini index are also empirically evaluated. We consider several empirical measures to analyse the performance of estimators and confidence intervals, allowing us to quantify the magnitude of the non-response bias problem. We find extremely large biases under certain non-response mechanisms, and this problem gets noticeably worse as the proportion of missing data increases. For a large correlation coefficient between the target and auxiliary variables, the regression imputation method may notably mitigate this bias problem, yielding appropriate mean square errors. We also find that confidence intervals have poor coverage rates when the probability of data being missing is not uniform, and that the regression imputation method substantially improves the handling of this problem as the correlation coefficient increases." @default.
- W4200395959 created "2021-12-31" @default.
- W4200395959 creator A5001487339 @default.
- W4200395959 creator A5019312710 @default.
- W4200395959 creator A5082065003 @default.
- W4200395959 date "2021-12-15" @default.
- W4200395959 modified "2023-10-17" @default.
- W4200395959 title "Single Imputation Methods and Confidence Intervals for the Gini Index" @default.
- W4200395959 cites W151981251 @default.
- W4200395959 cites W1758524554 @default.
- W4200395959 cites W1779117663 @default.
- W4200395959 cites W194242946 @default.
- W4200395959 cites W1975503357 @default.
- W4200395959 cites W1984621072 @default.
- W4200395959 cites W1989279378 @default.
- W4200395959 cites W1989965025 @default.
- W4200395959 cites W1999471727 @default.
- W4200395959 cites W2001768898 @default.
- W4200395959 cites W2030582242 @default.
- W4200395959 cites W2032378334 @default.
- W4200395959 cites W2034170501 @default.
- W4200395959 cites W2041493247 @default.
- W4200395959 cites W2051589331 @default.
- W4200395959 cites W2056884786 @default.
- W4200395959 cites W2075723759 @default.
- W4200395959 cites W2078654708 @default.
- W4200395959 cites W2092949813 @default.
- W4200395959 cites W2095552629 @default.
- W4200395959 cites W2096262641 @default.
- W4200395959 cites W2100358124 @default.
- W4200395959 cites W2125214887 @default.
- W4200395959 cites W2145683344 @default.
- W4200395959 cites W2153637311 @default.
- W4200395959 cites W2162313689 @default.
- W4200395959 cites W2163921928 @default.
- W4200395959 cites W2279519713 @default.
- W4200395959 cites W2318655531 @default.
- W4200395959 cites W2565523924 @default.
- W4200395959 cites W2581082906 @default.
- W4200395959 cites W2623357778 @default.
- W4200395959 cites W2754197261 @default.
- W4200395959 cites W2774669841 @default.
- W4200395959 cites W2788088345 @default.
- W4200395959 cites W2799557164 @default.
- W4200395959 cites W2918770724 @default.
- W4200395959 cites W2948468622 @default.
- W4200395959 cites W3042163229 @default.
- W4200395959 cites W3124232342 @default.
- W4200395959 cites W3159165270 @default.
- W4200395959 cites W4211101039 @default.
- W4200395959 doi "https://doi.org/10.3390/math9243252" @default.
- W4200395959 hasPublicationYear "2021" @default.
- W4200395959 type Work @default.
- W4200395959 citedByCount "1" @default.
- W4200395959 countsByYear W42003959592023 @default.
- W4200395959 crossrefType "journal-article" @default.
- W4200395959 hasAuthorship W4200395959A5001487339 @default.
- W4200395959 hasAuthorship W4200395959A5019312710 @default.
- W4200395959 hasAuthorship W4200395959A5082065003 @default.
- W4200395959 hasBestOaLocation W42003959591 @default.
- W4200395959 hasConcept C105795698 @default.
- W4200395959 hasConcept C117220453 @default.
- W4200395959 hasConcept C134306372 @default.
- W4200395959 hasConcept C149782125 @default.
- W4200395959 hasConcept C185429906 @default.
- W4200395959 hasConcept C2524010 @default.
- W4200395959 hasConcept C2779206190 @default.
- W4200395959 hasConcept C2781117939 @default.
- W4200395959 hasConcept C33923547 @default.
- W4200395959 hasConcept C44249647 @default.
- W4200395959 hasConcept C45555294 @default.
- W4200395959 hasConcept C513380476 @default.
- W4200395959 hasConcept C58041806 @default.
- W4200395959 hasConcept C83546350 @default.
- W4200395959 hasConcept C9357733 @default.
- W4200395959 hasConceptScore W4200395959C105795698 @default.
- W4200395959 hasConceptScore W4200395959C117220453 @default.
- W4200395959 hasConceptScore W4200395959C134306372 @default.
- W4200395959 hasConceptScore W4200395959C149782125 @default.
- W4200395959 hasConceptScore W4200395959C185429906 @default.
- W4200395959 hasConceptScore W4200395959C2524010 @default.
- W4200395959 hasConceptScore W4200395959C2779206190 @default.
- W4200395959 hasConceptScore W4200395959C2781117939 @default.
- W4200395959 hasConceptScore W4200395959C33923547 @default.
- W4200395959 hasConceptScore W4200395959C44249647 @default.
- W4200395959 hasConceptScore W4200395959C45555294 @default.
- W4200395959 hasConceptScore W4200395959C513380476 @default.
- W4200395959 hasConceptScore W4200395959C58041806 @default.
- W4200395959 hasConceptScore W4200395959C83546350 @default.
- W4200395959 hasConceptScore W4200395959C9357733 @default.
- W4200395959 hasIssue "24" @default.
- W4200395959 hasLocation W42003959591 @default.
- W4200395959 hasLocation W42003959592 @default.
- W4200395959 hasLocation W42003959593 @default.
- W4200395959 hasOpenAccess W4200395959 @default.
- W4200395959 hasPrimaryLocation W42003959591 @default.
- W4200395959 hasRelatedWork W2011694778 @default.
- W4200395959 hasRelatedWork W2073980917 @default.