Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200397074> ?p ?o ?g. }
- W4200397074 endingPage "7773" @default.
- W4200397074 startingPage "7749" @default.
- W4200397074 abstract "Abstract. An improved cloud detection algorithm for the Aura Microwave Limb Sounder (MLS) is presented. This new algorithm is based on a feedforward artificial neural network and uses as input, for each MLS limb scan, a vector consisting of 1710 brightness temperatures provided by MLS observations from 15 different tangent altitudes and up to 13 spectral channels in each of 10 different MLS bands. The model has been trained on global cloud properties reported by Aqua's Moderate Resolution Imaging Spectroradiometer (MODIS). In total, the colocated MLS–MODIS data set consists of 162 117 combined scenes sampled on 208 d over 2005–2020. A comparison to the current MLS cloudiness flag used in “Level 2” processing reveals a huge improvement in classification performance. For previously unseen data, the algorithm successfully detects > 93 % of profiles affected by clouds, up from ∼ 16 % for the Level 2 flagging. At the same time, false positives reported for actually clear profiles are comparable to the Level 2 results. The classification performance is not dependent on geolocation but slightly decreases over low-cloud-cover regions. The new cloudiness flag is applied to determine average global cloud cover maps over 2015–2019, successfully reproducing the spatial patterns of mid-level to high clouds seen in MODIS data. It is also applied to four example cloud fields to illustrate its reliable performance for different cloud structures with varying degrees of complexity. Training a similar model on MODIS-retrieved cloud top pressure (pCT) yields reliable predictions with correlation coefficients > 0.82. It is shown that the model can correctly identify > 85 % of profiles with pCT < 400 hPa. Similar to the cloud classification model, global maps and example cloud fields are provided, which reveal good agreement with MODIS results. The combination of the cloudiness flag and predicted cloud top pressure provides the means to identify MLS profiles in the presence of high-reaching convection." @default.
- W4200397074 created "2021-12-31" @default.
- W4200397074 creator A5003375212 @default.
- W4200397074 creator A5028562044 @default.
- W4200397074 creator A5031867901 @default.
- W4200397074 creator A5044202452 @default.
- W4200397074 creator A5052103833 @default.
- W4200397074 creator A5056460069 @default.
- W4200397074 date "2021-12-09" @default.
- W4200397074 modified "2023-10-17" @default.
- W4200397074 title "Improved cloud detection for the Aura Microwave Limb Sounder (MLS): training an artificial neural network on colocated MLS and Aqua MODIS data" @default.
- W4200397074 cites W1849415041 @default.
- W4200397074 cites W1883859813 @default.
- W4200397074 cites W1971323335 @default.
- W4200397074 cites W1982538133 @default.
- W4200397074 cites W2007969082 @default.
- W4200397074 cites W2010221143 @default.
- W4200397074 cites W2013689051 @default.
- W4200397074 cites W2015678441 @default.
- W4200397074 cites W2016901449 @default.
- W4200397074 cites W2025669240 @default.
- W4200397074 cites W2026203568 @default.
- W4200397074 cites W2027210298 @default.
- W4200397074 cites W2028189535 @default.
- W4200397074 cites W2028191110 @default.
- W4200397074 cites W2028348330 @default.
- W4200397074 cites W2039790124 @default.
- W4200397074 cites W2052057120 @default.
- W4200397074 cites W2053811834 @default.
- W4200397074 cites W2058940865 @default.
- W4200397074 cites W2077908651 @default.
- W4200397074 cites W2078133382 @default.
- W4200397074 cites W2104718076 @default.
- W4200397074 cites W2126240896 @default.
- W4200397074 cites W2134631034 @default.
- W4200397074 cites W2147800946 @default.
- W4200397074 cites W2148186985 @default.
- W4200397074 cites W2148556297 @default.
- W4200397074 cites W2159758127 @default.
- W4200397074 cites W2167750124 @default.
- W4200397074 cites W2168158289 @default.
- W4200397074 cites W2337146793 @default.
- W4200397074 cites W2512344390 @default.
- W4200397074 cites W2540743583 @default.
- W4200397074 cites W2796084042 @default.
- W4200397074 cites W2900016313 @default.
- W4200397074 cites W2946072066 @default.
- W4200397074 cites W2953058327 @default.
- W4200397074 cites W2976131535 @default.
- W4200397074 cites W3024740770 @default.
- W4200397074 cites W3106139303 @default.
- W4200397074 cites W3117004218 @default.
- W4200397074 cites W4244471710 @default.
- W4200397074 cites W4255949318 @default.
- W4200397074 doi "https://doi.org/10.5194/amt-14-7749-2021" @default.
- W4200397074 hasPublicationYear "2021" @default.
- W4200397074 type Work @default.
- W4200397074 citedByCount "2" @default.
- W4200397074 countsByYear W42003970742023 @default.
- W4200397074 crossrefType "journal-article" @default.
- W4200397074 hasAuthorship W4200397074A5003375212 @default.
- W4200397074 hasAuthorship W4200397074A5028562044 @default.
- W4200397074 hasAuthorship W4200397074A5031867901 @default.
- W4200397074 hasAuthorship W4200397074A5044202452 @default.
- W4200397074 hasAuthorship W4200397074A5052103833 @default.
- W4200397074 hasAuthorship W4200397074A5056460069 @default.
- W4200397074 hasBestOaLocation W42003970741 @default.
- W4200397074 hasConcept C111919701 @default.
- W4200397074 hasConcept C120665830 @default.
- W4200397074 hasConcept C121332964 @default.
- W4200397074 hasConcept C125245961 @default.
- W4200397074 hasConcept C127313418 @default.
- W4200397074 hasConcept C1276947 @default.
- W4200397074 hasConcept C147534773 @default.
- W4200397074 hasConcept C153294291 @default.
- W4200397074 hasConcept C154945302 @default.
- W4200397074 hasConcept C19269812 @default.
- W4200397074 hasConcept C205649164 @default.
- W4200397074 hasConcept C206887242 @default.
- W4200397074 hasConcept C2776025126 @default.
- W4200397074 hasConcept C2777007095 @default.
- W4200397074 hasConcept C39432304 @default.
- W4200397074 hasConcept C41008148 @default.
- W4200397074 hasConcept C44838205 @default.
- W4200397074 hasConcept C50644808 @default.
- W4200397074 hasConcept C53802167 @default.
- W4200397074 hasConcept C58489278 @default.
- W4200397074 hasConcept C62649853 @default.
- W4200397074 hasConcept C76155785 @default.
- W4200397074 hasConcept C79974875 @default.
- W4200397074 hasConceptScore W4200397074C111919701 @default.
- W4200397074 hasConceptScore W4200397074C120665830 @default.
- W4200397074 hasConceptScore W4200397074C121332964 @default.
- W4200397074 hasConceptScore W4200397074C125245961 @default.
- W4200397074 hasConceptScore W4200397074C127313418 @default.
- W4200397074 hasConceptScore W4200397074C1276947 @default.
- W4200397074 hasConceptScore W4200397074C147534773 @default.
- W4200397074 hasConceptScore W4200397074C153294291 @default.