Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200399298> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W4200399298 endingPage "32" @default.
- W4200399298 startingPage "1" @default.
- W4200399298 abstract "We derive new representations for the generalised Jacobian of a locally Lipschitz map between finite dimensional real Euclidean spaces as the lower limit (i.e., limit inferior) of the classical derivative of the map where it exists. The new representations lead to significantly shorter proofs for the basic properties of the subgradient and the generalised Jacobian including the chain rule. We establish that a sequence of locally Lipschitz maps between finite dimensional Euclidean spaces converges to a given locally Lipschitz map in the L-topology—that is, the weakest refinement of the sup norm topology on the space of locally Lipschitz maps that makes the generalised Jacobian a continuous functional—if and only if the limit superior of the sequence of directional derivatives of the maps in a given vector direction coincides with the generalised directional derivative of the given map in that direction, with the convergence to the limit superior being uniform for all unit vectors. We then prove our main result that the subspace of Lipschitz C ∞ maps between finite dimensional Euclidean spaces is dense in the space of Lipschitz maps equipped with the L-topology, and, for a given Lipschitz map, we explicitly construct a sequence of Lipschitz C ∞ maps converging to it in the L-topology, allowing global smooth approximation of a Lipschitz map and its differential properties. As an application, we obtain a short proof of the extension of Green’s theorem to interval-valued vector fields. For infinite dimensions, we show that the subgradient of a Lipschitz map on a Banach space is upper continuous, and, for a given real-valued Lipschitz map on a separable Banach space, we construct a sequence of Gateaux differentiable functions that converges to the map in the sup norm topology such that the limit superior of the directional derivatives in any direction coincides with the generalised directional derivative of the Lipschitz map in that direction." @default.
- W4200399298 created "2021-12-31" @default.
- W4200399298 creator A5058087229 @default.
- W4200399298 date "2021-12-22" @default.
- W4200399298 modified "2023-10-12" @default.
- W4200399298 title "Smooth Approximation of Lipschitz Maps and Their Subgradients" @default.
- W4200399298 cites W1525647423 @default.
- W4200399298 cites W1551360398 @default.
- W4200399298 cites W1571966798 @default.
- W4200399298 cites W1970872385 @default.
- W4200399298 cites W1972010412 @default.
- W4200399298 cites W1973769824 @default.
- W4200399298 cites W1978209239 @default.
- W4200399298 cites W1978588936 @default.
- W4200399298 cites W1980465912 @default.
- W4200399298 cites W1984190214 @default.
- W4200399298 cites W2000621909 @default.
- W4200399298 cites W2030347790 @default.
- W4200399298 cites W2036635907 @default.
- W4200399298 cites W2047305632 @default.
- W4200399298 cites W2062308906 @default.
- W4200399298 cites W2077696944 @default.
- W4200399298 cites W2091166411 @default.
- W4200399298 cites W2114953769 @default.
- W4200399298 cites W2115154197 @default.
- W4200399298 cites W2593063709 @default.
- W4200399298 cites W2796081525 @default.
- W4200399298 cites W3020998446 @default.
- W4200399298 cites W3096424428 @default.
- W4200399298 cites W4211265583 @default.
- W4200399298 cites W4241423584 @default.
- W4200399298 cites W4243945204 @default.
- W4200399298 cites W4251507077 @default.
- W4200399298 cites W4251593373 @default.
- W4200399298 doi "https://doi.org/10.1145/3481805" @default.
- W4200399298 hasPublicationYear "2021" @default.
- W4200399298 type Work @default.
- W4200399298 citedByCount "1" @default.
- W4200399298 crossrefType "journal-article" @default.
- W4200399298 hasAuthorship W4200399298A5058087229 @default.
- W4200399298 hasBestOaLocation W42003992981 @default.
- W4200399298 hasConcept C114614502 @default.
- W4200399298 hasConcept C126255220 @default.
- W4200399298 hasConcept C134306372 @default.
- W4200399298 hasConcept C13474197 @default.
- W4200399298 hasConcept C151201525 @default.
- W4200399298 hasConcept C158968445 @default.
- W4200399298 hasConcept C184720557 @default.
- W4200399298 hasConcept C186450821 @default.
- W4200399298 hasConcept C200331156 @default.
- W4200399298 hasConcept C202444582 @default.
- W4200399298 hasConcept C22324862 @default.
- W4200399298 hasConcept C28826006 @default.
- W4200399298 hasConcept C33923547 @default.
- W4200399298 hasConcept C71287196 @default.
- W4200399298 hasConceptScore W4200399298C114614502 @default.
- W4200399298 hasConceptScore W4200399298C126255220 @default.
- W4200399298 hasConceptScore W4200399298C134306372 @default.
- W4200399298 hasConceptScore W4200399298C13474197 @default.
- W4200399298 hasConceptScore W4200399298C151201525 @default.
- W4200399298 hasConceptScore W4200399298C158968445 @default.
- W4200399298 hasConceptScore W4200399298C184720557 @default.
- W4200399298 hasConceptScore W4200399298C186450821 @default.
- W4200399298 hasConceptScore W4200399298C200331156 @default.
- W4200399298 hasConceptScore W4200399298C202444582 @default.
- W4200399298 hasConceptScore W4200399298C22324862 @default.
- W4200399298 hasConceptScore W4200399298C28826006 @default.
- W4200399298 hasConceptScore W4200399298C33923547 @default.
- W4200399298 hasConceptScore W4200399298C71287196 @default.
- W4200399298 hasIssue "1" @default.
- W4200399298 hasLocation W42003992981 @default.
- W4200399298 hasLocation W42003992982 @default.
- W4200399298 hasOpenAccess W4200399298 @default.
- W4200399298 hasPrimaryLocation W42003992981 @default.
- W4200399298 hasRelatedWork W1980142525 @default.
- W4200399298 hasRelatedWork W1995180802 @default.
- W4200399298 hasRelatedWork W2055993960 @default.
- W4200399298 hasRelatedWork W2071871835 @default.
- W4200399298 hasRelatedWork W2083899393 @default.
- W4200399298 hasRelatedWork W2110693695 @default.
- W4200399298 hasRelatedWork W3191906392 @default.
- W4200399298 hasRelatedWork W4200399298 @default.
- W4200399298 hasRelatedWork W4248060259 @default.
- W4200399298 hasRelatedWork W4226276816 @default.
- W4200399298 hasVolume "69" @default.
- W4200399298 isParatext "false" @default.
- W4200399298 isRetracted "false" @default.
- W4200399298 workType "article" @default.