Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200399315> ?p ?o ?g. }
- W4200399315 abstract "Abstract Quantitative Phase Imaging (QPI) has gained popularity because it can avoid the staining step, which in some cases is difficult or impossible. However, QPI does not provide the well-known specificity to various parts of the cell (e.g., organelles, membrane). Here we show a novel computational segmentation method based on statistical inference that bridges the gap between the specificity of Fluorescence Microscopy (FM) and the label-free property of QPI techniques to identify the cell nucleus. We demonstrate application to stain-free cells reconstructed through the holographic learning and in flow cyto-tomography modality. In particular, by means of numerical simulations and two cancer cell lines, we demonstrate that the nucleus-like regions can be accurately distinguished within the stain-free tomograms. We show that our experimental results are consistent with confocal FM data and microfluidic cytofluorimeter outputs. This is a significant step towards extracting the three-dimensional (3D) intracellular specificity directly from the phase-contrast data in a typical flow cytometry configuration." @default.
- W4200399315 created "2021-12-31" @default.
- W4200399315 creator A5015681204 @default.
- W4200399315 creator A5022755764 @default.
- W4200399315 creator A5034477096 @default.
- W4200399315 creator A5036229619 @default.
- W4200399315 creator A5037500182 @default.
- W4200399315 creator A5037659523 @default.
- W4200399315 creator A5048152891 @default.
- W4200399315 creator A5049498911 @default.
- W4200399315 creator A5056716297 @default.
- W4200399315 creator A5062126435 @default.
- W4200399315 creator A5064159879 @default.
- W4200399315 creator A5068562700 @default.
- W4200399315 creator A5072827553 @default.
- W4200399315 creator A5073389772 @default.
- W4200399315 date "2021-12-23" @default.
- W4200399315 modified "2023-09-30" @default.
- W4200399315 title "Stain-free nucleus identification in holographic learning flow cyto-tomography" @default.
- W4200399315 cites W1597864587 @default.
- W4200399315 cites W1724083087 @default.
- W4200399315 cites W1926753035 @default.
- W4200399315 cites W1972978214 @default.
- W4200399315 cites W1978710864 @default.
- W4200399315 cites W2002114598 @default.
- W4200399315 cites W2010399610 @default.
- W4200399315 cites W2029054052 @default.
- W4200399315 cites W2075071462 @default.
- W4200399315 cites W2076673651 @default.
- W4200399315 cites W2143794919 @default.
- W4200399315 cites W2157483638 @default.
- W4200399315 cites W2221784882 @default.
- W4200399315 cites W2258981739 @default.
- W4200399315 cites W2293327468 @default.
- W4200399315 cites W2303328659 @default.
- W4200399315 cites W2556754156 @default.
- W4200399315 cites W2604600002 @default.
- W4200399315 cites W2605076099 @default.
- W4200399315 cites W2738767990 @default.
- W4200399315 cites W2752157761 @default.
- W4200399315 cites W2765203757 @default.
- W4200399315 cites W2801106605 @default.
- W4200399315 cites W2884160046 @default.
- W4200399315 cites W2885304391 @default.
- W4200399315 cites W2888128660 @default.
- W4200399315 cites W2892479404 @default.
- W4200399315 cites W2899684775 @default.
- W4200399315 cites W2917684769 @default.
- W4200399315 cites W2949887768 @default.
- W4200399315 cites W2951939591 @default.
- W4200399315 cites W3007823945 @default.
- W4200399315 cites W3015841005 @default.
- W4200399315 cites W3015979632 @default.
- W4200399315 cites W3082250758 @default.
- W4200399315 cites W3100382593 @default.
- W4200399315 cites W3102777923 @default.
- W4200399315 cites W3102956974 @default.
- W4200399315 cites W3106512002 @default.
- W4200399315 cites W3112158685 @default.
- W4200399315 cites W3179831293 @default.
- W4200399315 cites W3200111609 @default.
- W4200399315 cites W4249336316 @default.
- W4200399315 cites W4252684946 @default.
- W4200399315 doi "https://doi.org/10.1101/2021.12.22.473826" @default.
- W4200399315 hasPublicationYear "2021" @default.
- W4200399315 type Work @default.
- W4200399315 citedByCount "0" @default.
- W4200399315 crossrefType "posted-content" @default.
- W4200399315 hasAuthorship W4200399315A5015681204 @default.
- W4200399315 hasAuthorship W4200399315A5022755764 @default.
- W4200399315 hasAuthorship W4200399315A5034477096 @default.
- W4200399315 hasAuthorship W4200399315A5036229619 @default.
- W4200399315 hasAuthorship W4200399315A5037500182 @default.
- W4200399315 hasAuthorship W4200399315A5037659523 @default.
- W4200399315 hasAuthorship W4200399315A5048152891 @default.
- W4200399315 hasAuthorship W4200399315A5049498911 @default.
- W4200399315 hasAuthorship W4200399315A5056716297 @default.
- W4200399315 hasAuthorship W4200399315A5062126435 @default.
- W4200399315 hasAuthorship W4200399315A5064159879 @default.
- W4200399315 hasAuthorship W4200399315A5068562700 @default.
- W4200399315 hasAuthorship W4200399315A5072827553 @default.
- W4200399315 hasAuthorship W4200399315A5073389772 @default.
- W4200399315 hasBestOaLocation W42003993151 @default.
- W4200399315 hasConcept C120665830 @default.
- W4200399315 hasConcept C121332964 @default.
- W4200399315 hasConcept C136009344 @default.
- W4200399315 hasConcept C147080431 @default.
- W4200399315 hasConcept C154945302 @default.
- W4200399315 hasConcept C163716698 @default.
- W4200399315 hasConcept C187590223 @default.
- W4200399315 hasConcept C2779178360 @default.
- W4200399315 hasConcept C2780723820 @default.
- W4200399315 hasConcept C2781294515 @default.
- W4200399315 hasConcept C41008148 @default.
- W4200399315 hasConcept C54355233 @default.
- W4200399315 hasConcept C74864618 @default.
- W4200399315 hasConcept C86803240 @default.
- W4200399315 hasConcept C89600930 @default.
- W4200399315 hasConcept C95444343 @default.
- W4200399315 hasConceptScore W4200399315C120665830 @default.