Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200400075> ?p ?o ?g. }
- W4200400075 endingPage "115648" @default.
- W4200400075 startingPage "115648" @default.
- W4200400075 abstract "• 3D spectral model developed to fingerprint loess soils using principal component analysis. • Sensor fusion improves the performance of machine-learning-based models. • Spectral modeling provides alternative to mineral/geochemical pedogenic proxies. • Loess deposits from various climatic zones were influenced by the Asian monsoons. • Spectral modeling facilitates large-scale investigation of environmental changes. Loess deposits are important records of the evolution of the soil environment and pedogenic weathering. Changes in pedogenic weathering conditions through space and time, as well as discrimination/sourcing of loess-derived soils, are important scientific issues in the soil (paleosol) community. Here, 502 soil samples from four loess chronosequences representing different climatic zones of China were investigated using portable X-ray fluorescence (PXRF) and visible to near-infrared reflectance (VNIR) in combination with previously published mineralogic and magnetic datasets. A spectral modeling approach was employed to discriminate loess-derived soils from different regions of China. We developed a three-dimensional model to fingerprint loess-derived soils using principal component analysis (PCA), showing that soils accumulating under varying climatic conditions were effectively discriminated with sensor fusion data. Six key soil mineralogic and magnetic attributes serving as pedogenic-weathering proxies were analyzed and predicted with conventional methods and chemometric models. Predictive models were constructed with machine learning methods, including partial least squares regression (PLSR), random forest (RF), and Cubist algorithms. The results indicate that the Cubist algorithm works better than PLSR and RF in predicting pedogenic-weathering proxies. The cross-validation results indicate that, although models derived from single sensors (i.e., PXRF or VNIR) work well in predicting pedogenic-weathering proxies, the sensor fusion approach is superior with regard to accuracy and robustness of results in most cases. We suggest that the combined elemental and secondary-mineral information provided by the fused PXRF-VNIR datasets can yield high-accuracy models in soil (paleosol) investigations. The sensor fusion models reveal that pedogenic processes in the loess chronosequences are diversified both spatially and temporally in different climate zones of China. Our results suggest that spectral modeling can be an alternative to geochemical, mineralogic and magnetic pedogenic-weathering proxies, and that it has great potential for investigating soil-forming conditions and pedogenic-weathering evolution, especially when large-area and/or high-resolution analysis is required." @default.
- W4200400075 created "2021-12-31" @default.
- W4200400075 creator A5003360183 @default.
- W4200400075 creator A5037989560 @default.
- W4200400075 creator A5042143062 @default.
- W4200400075 creator A5047571353 @default.
- W4200400075 creator A5050032602 @default.
- W4200400075 creator A5053751159 @default.
- W4200400075 creator A5067766423 @default.
- W4200400075 creator A5070746201 @default.
- W4200400075 creator A5075774709 @default.
- W4200400075 creator A5080690484 @default.
- W4200400075 date "2022-03-01" @default.
- W4200400075 modified "2023-10-16" @default.
- W4200400075 title "Pedogenic-weathering evolution and soil discrimination by sensor fusion combined with machine-learning-based spectral modeling" @default.
- W4200400075 cites W1190219959 @default.
- W4200400075 cites W1637856870 @default.
- W4200400075 cites W1934353085 @default.
- W4200400075 cites W1975896553 @default.
- W4200400075 cites W1977708249 @default.
- W4200400075 cites W1979539465 @default.
- W4200400075 cites W1982344064 @default.
- W4200400075 cites W1983823884 @default.
- W4200400075 cites W1985430848 @default.
- W4200400075 cites W1991322402 @default.
- W4200400075 cites W1994473632 @default.
- W4200400075 cites W1997207432 @default.
- W4200400075 cites W2002180612 @default.
- W4200400075 cites W2012045156 @default.
- W4200400075 cites W2016269349 @default.
- W4200400075 cites W2024208087 @default.
- W4200400075 cites W2032086472 @default.
- W4200400075 cites W2049267528 @default.
- W4200400075 cites W2049700763 @default.
- W4200400075 cites W2052903566 @default.
- W4200400075 cites W2054029580 @default.
- W4200400075 cites W2058934578 @default.
- W4200400075 cites W2061727042 @default.
- W4200400075 cites W2066722804 @default.
- W4200400075 cites W2067119691 @default.
- W4200400075 cites W2073858026 @default.
- W4200400075 cites W2075493516 @default.
- W4200400075 cites W2077007206 @default.
- W4200400075 cites W2077286728 @default.
- W4200400075 cites W2077851100 @default.
- W4200400075 cites W2089694438 @default.
- W4200400075 cites W2092144691 @default.
- W4200400075 cites W2094352076 @default.
- W4200400075 cites W2104224684 @default.
- W4200400075 cites W2111590126 @default.
- W4200400075 cites W2128239598 @default.
- W4200400075 cites W2159977911 @default.
- W4200400075 cites W225220184 @default.
- W4200400075 cites W2274117189 @default.
- W4200400075 cites W2292439029 @default.
- W4200400075 cites W2313339984 @default.
- W4200400075 cites W2410552594 @default.
- W4200400075 cites W2463337816 @default.
- W4200400075 cites W2511626303 @default.
- W4200400075 cites W2518313829 @default.
- W4200400075 cites W2555568769 @default.
- W4200400075 cites W2589250977 @default.
- W4200400075 cites W2679572246 @default.
- W4200400075 cites W2736283711 @default.
- W4200400075 cites W2774397624 @default.
- W4200400075 cites W2784062288 @default.
- W4200400075 cites W2793399966 @default.
- W4200400075 cites W2885633929 @default.
- W4200400075 cites W2888610957 @default.
- W4200400075 cites W2908657706 @default.
- W4200400075 cites W2911964244 @default.
- W4200400075 cites W2913414890 @default.
- W4200400075 cites W2931426342 @default.
- W4200400075 cites W2938066585 @default.
- W4200400075 cites W2951230751 @default.
- W4200400075 cites W2972140006 @default.
- W4200400075 cites W2972616546 @default.
- W4200400075 cites W2998005869 @default.
- W4200400075 cites W3002209846 @default.
- W4200400075 cites W3003493504 @default.
- W4200400075 cites W3003889422 @default.
- W4200400075 cites W3018021150 @default.
- W4200400075 cites W3031654420 @default.
- W4200400075 cites W3039940552 @default.
- W4200400075 cites W3081235051 @default.
- W4200400075 cites W3103589903 @default.
- W4200400075 cites W3112319399 @default.
- W4200400075 cites W3114429604 @default.
- W4200400075 cites W3120199227 @default.
- W4200400075 cites W3124722714 @default.
- W4200400075 cites W3159419762 @default.
- W4200400075 cites W40397213 @default.
- W4200400075 doi "https://doi.org/10.1016/j.geoderma.2021.115648" @default.
- W4200400075 hasPublicationYear "2022" @default.
- W4200400075 type Work @default.
- W4200400075 citedByCount "0" @default.
- W4200400075 crossrefType "journal-article" @default.
- W4200400075 hasAuthorship W4200400075A5003360183 @default.