Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200401070> ?p ?o ?g. }
- W4200401070 endingPage "100817" @default.
- W4200401070 startingPage "100817" @default.
- W4200401070 abstract "Delayed Cerebral Ischemia (DCI) is an important cause of morbidity and mortality after aneurysmal Subarachnoid Hemorrhage (aSAH). Researchers have utilized various methods for predicting patients at risk for DCI progression. An eight-year retrospective review of aSAH patients who presented to St Louis University Hospital. The records were screened for demographic, clinical, and radiographic parameters. DCI was the primary outcome. We identified 16 features to fit various forecasting models and selected the best binary classifier through comprehensive machine learning (ML) workflows. Regression and ensemble tree-based algorithms were utilized, based on their performance on tabular data. We investigated whether a single model could outperform in our dataset. Due to the expected outcome class imbalance (DCI), we selected precision, recall, and F-score as threshold metrics. Precision-recall curves were used for model performance ranking. Of the 213 aSAH patients analyzed, 42 progressed to DCI (19.7%). The mean age was 55.7 years. The outcome variable (DCI) was imbalanced with a class ratio of 1:4. Bivariate analysis revealed two significant associations: The “Hunt-and-Hess scale” (p-value = 0.016), and “Posthemorrhagic hydrocephalus” (p-value < 0.001). The all-relevant important factors during feature selection were: “Fisher scale,” “Modified Fisher scale,” “Hunt-and-Hess scale,” and “Posthemorrhagic hydrocephalus”. “Treatment type” was tentative. The random forests model achieved a pooled accuracy of 71.1% (95%CI: 60.4, 83.4) with an F1-score of 0.484. The best binary classifier utilized extreme gradient boosting while trained on the all-relevant predictors plus “Aneurysm type.” Extreme gradient boosting achieved a predictive accuracy of 84.3% (95%CI: 75.9, 93.4) with an F1-score of 0.684. We describe the challenges that arise during training of a binary classifier on imbalanced datasets, and, while going through an extensive comparison review of similar published studies, we not only demonstrate the model's performance but also identify multiple forecasting methodological fallacies in neurological research. By implementing baseline patient characteristics combined with radiographic grading scales, we built a simple yet robust, highly accurate—but, most importantly—useful binary classifier for DCI prediction. The model is available online, and it can be utilized clinically as an effective forecasting tool (https://georgiosalexopoulos.shinyapps.io/download/)." @default.
- W4200401070 created "2021-12-31" @default.
- W4200401070 creator A5004551453 @default.
- W4200401070 creator A5021713425 @default.
- W4200401070 creator A5033772641 @default.
- W4200401070 creator A5046549316 @default.
- W4200401070 creator A5054553925 @default.
- W4200401070 creator A5059358936 @default.
- W4200401070 creator A5066415580 @default.
- W4200401070 creator A5071647923 @default.
- W4200401070 creator A5075755915 @default.
- W4200401070 creator A5083622084 @default.
- W4200401070 creator A5084021832 @default.
- W4200401070 creator A5086296427 @default.
- W4200401070 date "2022-01-01" @default.
- W4200401070 modified "2023-10-15" @default.
- W4200401070 title "Applied forecasting for delayed cerebral ischemia prediction post subarachnoid hemorrhage: Methodological fallacies" @default.
- W4200401070 cites W1600156163 @default.
- W4200401070 cites W2022912575 @default.
- W4200401070 cites W2044287170 @default.
- W4200401070 cites W2044462811 @default.
- W4200401070 cites W2070493638 @default.
- W4200401070 cites W2088211607 @default.
- W4200401070 cites W2091232037 @default.
- W4200401070 cites W2094075028 @default.
- W4200401070 cites W2106398669 @default.
- W4200401070 cites W2111741706 @default.
- W4200401070 cites W2137276282 @default.
- W4200401070 cites W2141014056 @default.
- W4200401070 cites W2156665896 @default.
- W4200401070 cites W2289550365 @default.
- W4200401070 cites W2469603568 @default.
- W4200401070 cites W2589805776 @default.
- W4200401070 cites W2737706773 @default.
- W4200401070 cites W2792095526 @default.
- W4200401070 cites W2792487354 @default.
- W4200401070 cites W2792887021 @default.
- W4200401070 cites W2800554791 @default.
- W4200401070 cites W2866099267 @default.
- W4200401070 cites W2899722123 @default.
- W4200401070 cites W2911964244 @default.
- W4200401070 cites W2913602431 @default.
- W4200401070 cites W2944309483 @default.
- W4200401070 cites W2995098893 @default.
- W4200401070 cites W2996234473 @default.
- W4200401070 cites W3014606782 @default.
- W4200401070 cites W3026966766 @default.
- W4200401070 cites W3034655770 @default.
- W4200401070 cites W3035500320 @default.
- W4200401070 cites W3084021177 @default.
- W4200401070 cites W3087147343 @default.
- W4200401070 cites W3092291418 @default.
- W4200401070 cites W3103346582 @default.
- W4200401070 cites W3111454963 @default.
- W4200401070 doi "https://doi.org/10.1016/j.imu.2021.100817" @default.
- W4200401070 hasPublicationYear "2022" @default.
- W4200401070 type Work @default.
- W4200401070 citedByCount "2" @default.
- W4200401070 countsByYear W42004010702023 @default.
- W4200401070 crossrefType "journal-article" @default.
- W4200401070 hasAuthorship W4200401070A5004551453 @default.
- W4200401070 hasAuthorship W4200401070A5021713425 @default.
- W4200401070 hasAuthorship W4200401070A5033772641 @default.
- W4200401070 hasAuthorship W4200401070A5046549316 @default.
- W4200401070 hasAuthorship W4200401070A5054553925 @default.
- W4200401070 hasAuthorship W4200401070A5059358936 @default.
- W4200401070 hasAuthorship W4200401070A5066415580 @default.
- W4200401070 hasAuthorship W4200401070A5071647923 @default.
- W4200401070 hasAuthorship W4200401070A5075755915 @default.
- W4200401070 hasAuthorship W4200401070A5083622084 @default.
- W4200401070 hasAuthorship W4200401070A5084021832 @default.
- W4200401070 hasAuthorship W4200401070A5086296427 @default.
- W4200401070 hasBestOaLocation W42004010701 @default.
- W4200401070 hasConcept C126322002 @default.
- W4200401070 hasConcept C154945302 @default.
- W4200401070 hasConcept C2777736543 @default.
- W4200401070 hasConcept C41008148 @default.
- W4200401070 hasConcept C58471807 @default.
- W4200401070 hasConcept C71924100 @default.
- W4200401070 hasConceptScore W4200401070C126322002 @default.
- W4200401070 hasConceptScore W4200401070C154945302 @default.
- W4200401070 hasConceptScore W4200401070C2777736543 @default.
- W4200401070 hasConceptScore W4200401070C41008148 @default.
- W4200401070 hasConceptScore W4200401070C58471807 @default.
- W4200401070 hasConceptScore W4200401070C71924100 @default.
- W4200401070 hasLocation W42004010701 @default.
- W4200401070 hasLocation W42004010702 @default.
- W4200401070 hasOpenAccess W4200401070 @default.
- W4200401070 hasPrimaryLocation W42004010701 @default.
- W4200401070 hasRelatedWork W1506200166 @default.
- W4200401070 hasRelatedWork W1995515455 @default.
- W4200401070 hasRelatedWork W2048182022 @default.
- W4200401070 hasRelatedWork W2080531066 @default.
- W4200401070 hasRelatedWork W2604872355 @default.
- W4200401070 hasRelatedWork W2748952813 @default.
- W4200401070 hasRelatedWork W2899084033 @default.
- W4200401070 hasRelatedWork W3031052312 @default.
- W4200401070 hasRelatedWork W3032375762 @default.