Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200401219> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W4200401219 abstract "Monitoring activities of daily life (ADLs) allows to evaluate health conditions for older adults. However, there are still a limited number of studies on bathroom activities monitoring using a wrist-mounted accelerometer. To fill this gap, in this study, researchers collected data from 15 older adults wearing a wrist-mounted accelerometer. Six bathroom activities, i.e., dressing, undressing, brushing teeth, using toilet, washing face, and washing hands, were investigated. In total, 49.4-hour data for bathroom activities were collected. A hybrid convolutional neural network (CNN) is introduced for bathroom activity recognition. This hybrid CNN model is developed using both hand-crafted and CNN-based features as input. The proposed hybrid CNN model is compared to four machine learning models, i.e., Multilayer Perceptron (MLP), Support Vector Machines (SVM), K-nearest Neighbors (KNN), and Decision Trees (DT), and a conventional CNN model. Based on the classification results of leave-one-subject-out cross-validation (LOSO), the hybrid CNN model outperformed the other models. The hybrid CNN model is also tested based on a transfer learning method. As a calibration step based on LOSO, the transfer learning method additionally trains the model with an example of each activity from the test subject. The transfer learning method obtained better classification performance than LOSO. With transfer learning, the f1-score for using toilet was improved from 0.7784 to 0.8437. This study proposes a deep learning model fusing hand-crafted features and CNN-based features. Besides, the transfer learning method offers a way to build subject-dependent models to improve the classification performance.Clinical relevance –This provides a model that helps monitoring older adults' bathroom activities using a single wrist-mounted accelerometer." @default.
- W4200401219 created "2021-12-31" @default.
- W4200401219 creator A5016823997 @default.
- W4200401219 creator A5046066894 @default.
- W4200401219 creator A5048460837 @default.
- W4200401219 creator A5053968153 @default.
- W4200401219 creator A5074091537 @default.
- W4200401219 date "2021-11-01" @default.
- W4200401219 modified "2023-09-27" @default.
- W4200401219 title "Bathroom activities monitoring for older adults by a wrist-mounted accelerometer using a hybrid deep learning model" @default.
- W4200401219 cites W1762028752 @default.
- W4200401219 cites W1969069964 @default.
- W4200401219 cites W1986741823 @default.
- W4200401219 cites W1990969437 @default.
- W4200401219 cites W2086060900 @default.
- W4200401219 cites W2103394661 @default.
- W4200401219 cites W2153506531 @default.
- W4200401219 cites W2247209766 @default.
- W4200401219 cites W2504661280 @default.
- W4200401219 cites W2898534411 @default.
- W4200401219 cites W2898836677 @default.
- W4200401219 cites W2941733427 @default.
- W4200401219 cites W3137914494 @default.
- W4200401219 doi "https://doi.org/10.1109/embc46164.2021.9630659" @default.
- W4200401219 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34892740" @default.
- W4200401219 hasPublicationYear "2021" @default.
- W4200401219 type Work @default.
- W4200401219 citedByCount "1" @default.
- W4200401219 countsByYear W42004012192022 @default.
- W4200401219 crossrefType "proceedings-article" @default.
- W4200401219 hasAuthorship W4200401219A5016823997 @default.
- W4200401219 hasAuthorship W4200401219A5046066894 @default.
- W4200401219 hasAuthorship W4200401219A5048460837 @default.
- W4200401219 hasAuthorship W4200401219A5053968153 @default.
- W4200401219 hasAuthorship W4200401219A5074091537 @default.
- W4200401219 hasBestOaLocation W42004012191 @default.
- W4200401219 hasConcept C108583219 @default.
- W4200401219 hasConcept C111919701 @default.
- W4200401219 hasConcept C119857082 @default.
- W4200401219 hasConcept C12267149 @default.
- W4200401219 hasConcept C150899416 @default.
- W4200401219 hasConcept C154945302 @default.
- W4200401219 hasConcept C179717631 @default.
- W4200401219 hasConcept C31972630 @default.
- W4200401219 hasConcept C41008148 @default.
- W4200401219 hasConcept C50644808 @default.
- W4200401219 hasConcept C81363708 @default.
- W4200401219 hasConcept C89805583 @default.
- W4200401219 hasConceptScore W4200401219C108583219 @default.
- W4200401219 hasConceptScore W4200401219C111919701 @default.
- W4200401219 hasConceptScore W4200401219C119857082 @default.
- W4200401219 hasConceptScore W4200401219C12267149 @default.
- W4200401219 hasConceptScore W4200401219C150899416 @default.
- W4200401219 hasConceptScore W4200401219C154945302 @default.
- W4200401219 hasConceptScore W4200401219C179717631 @default.
- W4200401219 hasConceptScore W4200401219C31972630 @default.
- W4200401219 hasConceptScore W4200401219C41008148 @default.
- W4200401219 hasConceptScore W4200401219C50644808 @default.
- W4200401219 hasConceptScore W4200401219C81363708 @default.
- W4200401219 hasConceptScore W4200401219C89805583 @default.
- W4200401219 hasLocation W42004012191 @default.
- W4200401219 hasLocation W42004012192 @default.
- W4200401219 hasOpenAccess W4200401219 @default.
- W4200401219 hasPrimaryLocation W42004012191 @default.
- W4200401219 hasRelatedWork W2997709384 @default.
- W4200401219 hasRelatedWork W3018421652 @default.
- W4200401219 hasRelatedWork W3091976719 @default.
- W4200401219 hasRelatedWork W3189091156 @default.
- W4200401219 hasRelatedWork W3192840557 @default.
- W4200401219 hasRelatedWork W4320802194 @default.
- W4200401219 hasRelatedWork W4362564549 @default.
- W4200401219 hasRelatedWork W4366224123 @default.
- W4200401219 hasRelatedWork W4381832759 @default.
- W4200401219 hasRelatedWork W4382193078 @default.
- W4200401219 isParatext "false" @default.
- W4200401219 isRetracted "false" @default.
- W4200401219 workType "article" @default.