Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200401776> ?p ?o ?g. }
- W4200401776 endingPage "024005" @default.
- W4200401776 startingPage "024005" @default.
- W4200401776 abstract "Abstract Due to the merits of self-stability and low energy consumption, high-temperature superconducting (HTS) maglev has the potential to become a novel type of transportation mode. As a key index to guarantee the lateral self-stability of HTS maglev, guiding force has strong non-linearity and is determined by multitudinous factors, and these complexities impede its further researches. Compared to traditional finite element and polynomial fitting method, the prosperity of deep learning algorithms could provide another guiding force prediction approach, but the verification of this approach is still blank. Therefore, this paper establishes five different neural network models (radial basis function, deep neural network (DNN), convolution neural network, recurrent neural network, long short-term memory neural network (LSTM)) to predict HTS maglev guiding force and compares their prediction efficiency based on 3720 pieces of collected data. Meanwhile, two adaptive iterative algorithms for the parameter matrix and learning rate adjustment are proposed, which could effectively reduce computing time and unnecessary iterations. According to the results, it is revealed that the DNN model shows the best fitting goodness, while the LSTM model displays the smoothest fitting curve on guiding force prediction. Based on this discovery, the effects of learning rate and iterations on prediction accuracy of the constructed DNN model are studied. And the learning rate and iterations at the highest guiding force prediction accuracy are 0.00025 and 90 000, respectively. Moreover, the K -fold cross-validation method is also applied to this DNN model, whose result manifests the generalization and robustness of this DNN model. The imperative of K -fold cross validation method to ensure universality of guiding force prediction model is likewise assessed. This paper firstly combines HTS maglev guiding force prediction with deep learning algorithms considering different field cooling height, real-time magnetic flux density, liquid nitrogen temperature and motion direction of bulk. Additionally, this paper gives a convenient and efficient method for HTS guiding force prediction and parameter optimization." @default.
- W4200401776 created "2021-12-31" @default.
- W4200401776 creator A5003849123 @default.
- W4200401776 creator A5026283560 @default.
- W4200401776 creator A5047909853 @default.
- W4200401776 creator A5066483084 @default.
- W4200401776 creator A5087975689 @default.
- W4200401776 date "2022-01-11" @default.
- W4200401776 modified "2023-10-16" @default.
- W4200401776 title "Prediction models establishment and comparison for guiding force of high-temperature superconducting maglev based on deep learning algorithms" @default.
- W4200401776 cites W104129680 @default.
- W4200401776 cites W1963882359 @default.
- W4200401776 cites W1970196293 @default.
- W4200401776 cites W1983726540 @default.
- W4200401776 cites W2015861736 @default.
- W4200401776 cites W2022968078 @default.
- W4200401776 cites W2025866148 @default.
- W4200401776 cites W2032551484 @default.
- W4200401776 cites W2033396148 @default.
- W4200401776 cites W2038340914 @default.
- W4200401776 cites W2038780961 @default.
- W4200401776 cites W2047026379 @default.
- W4200401776 cites W2062506661 @default.
- W4200401776 cites W2062911874 @default.
- W4200401776 cites W2069651689 @default.
- W4200401776 cites W2087638325 @default.
- W4200401776 cites W2105092542 @default.
- W4200401776 cites W2106270252 @default.
- W4200401776 cites W2124820885 @default.
- W4200401776 cites W2130999768 @default.
- W4200401776 cites W2143956139 @default.
- W4200401776 cites W2147568880 @default.
- W4200401776 cites W2149170379 @default.
- W4200401776 cites W2171277043 @default.
- W4200401776 cites W2172292195 @default.
- W4200401776 cites W2279808357 @default.
- W4200401776 cites W2339985411 @default.
- W4200401776 cites W2439919362 @default.
- W4200401776 cites W2559394418 @default.
- W4200401776 cites W2565165562 @default.
- W4200401776 cites W2578515372 @default.
- W4200401776 cites W2588277159 @default.
- W4200401776 cites W2627086170 @default.
- W4200401776 cites W2736299555 @default.
- W4200401776 cites W2767208346 @default.
- W4200401776 cites W2782890451 @default.
- W4200401776 cites W2792719827 @default.
- W4200401776 cites W2805247421 @default.
- W4200401776 cites W2809371442 @default.
- W4200401776 cites W2899790004 @default.
- W4200401776 cites W2910716906 @default.
- W4200401776 cites W2938381763 @default.
- W4200401776 cites W2951741973 @default.
- W4200401776 cites W2966410948 @default.
- W4200401776 cites W2987401022 @default.
- W4200401776 cites W2999628933 @default.
- W4200401776 cites W3009955364 @default.
- W4200401776 cites W3023957617 @default.
- W4200401776 cites W3024140953 @default.
- W4200401776 cites W3033186130 @default.
- W4200401776 cites W3098207951 @default.
- W4200401776 cites W3104599990 @default.
- W4200401776 cites W3109328569 @default.
- W4200401776 cites W3111070110 @default.
- W4200401776 cites W3161952592 @default.
- W4200401776 cites W3174590038 @default.
- W4200401776 cites W3174604936 @default.
- W4200401776 cites W3185971715 @default.
- W4200401776 cites W3197090376 @default.
- W4200401776 cites W3213067890 @default.
- W4200401776 cites W4246275344 @default.
- W4200401776 cites W4289236186 @default.
- W4200401776 doi "https://doi.org/10.1088/1361-6668/ac455d" @default.
- W4200401776 hasPublicationYear "2022" @default.
- W4200401776 type Work @default.
- W4200401776 citedByCount "7" @default.
- W4200401776 countsByYear W42004017762022 @default.
- W4200401776 countsByYear W42004017762023 @default.
- W4200401776 crossrefType "journal-article" @default.
- W4200401776 hasAuthorship W4200401776A5003849123 @default.
- W4200401776 hasAuthorship W4200401776A5026283560 @default.
- W4200401776 hasAuthorship W4200401776A5047909853 @default.
- W4200401776 hasAuthorship W4200401776A5066483084 @default.
- W4200401776 hasAuthorship W4200401776A5087975689 @default.
- W4200401776 hasConcept C104317684 @default.
- W4200401776 hasConcept C108583219 @default.
- W4200401776 hasConcept C112972136 @default.
- W4200401776 hasConcept C11413529 @default.
- W4200401776 hasConcept C119599485 @default.
- W4200401776 hasConcept C119857082 @default.
- W4200401776 hasConcept C127413603 @default.
- W4200401776 hasConcept C154945302 @default.
- W4200401776 hasConcept C185592680 @default.
- W4200401776 hasConcept C196781063 @default.
- W4200401776 hasConcept C41008148 @default.
- W4200401776 hasConcept C50644808 @default.
- W4200401776 hasConcept C55493867 @default.
- W4200401776 hasConcept C63479239 @default.