Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200402608> ?p ?o ?g. }
- W4200402608 endingPage "659" @default.
- W4200402608 startingPage "649" @default.
- W4200402608 abstract "ConspectusWith the worldwide demand for refrigeration and cooling expected to triple, it is increasingly important to search for alternative energy resources to drive refrigeration cycles with reduced electricity consumption. Recently, adsorption cooling has gained increased attention since energy reallocation in such systems is based on gas adsorption/desorption, which can be driven by waste/natural heat sources. Eco-friendly sorption-based cooling relies on the cyclic transfer of refrigerant gas from a high to low energy state by the pseudocompression effect resulting from adsorption and desorption. The driving force for energy transfer relies on heat rather than electricity. The performance of a sorption chiller is primarily influenced by this cyclic sorption behavior, which is characterized as the working capacity of the porous sorbent. Thus, increases in this working capacity directly translate to a more compact and efficient cooling system. However, a lack of highly effective sorbent/refrigerant pairs lowers cooling performance and therefore has limited applicability. To this end, synthetic metal–organic frameworks (MOFs) and covalent organic polymers (COPs) possess higher porosity and greater tunability leading to more substantial potential benefits for adsorption, compared to traditional sorbent materials. Similarly, hydrofluorocarbon refrigerants have more favorable applicability given the ease of operation above atmospheric pressures due to suitable saturated vapor pressures and boiling points. For these reasons, our work focuses on an ongoing strategy to promote sorption cooling via improvements in the sorbent/refrigerant pair. Specifically, we target the interaction of hydrofluorocarbon refrigerants with MOF/COP materials at a molecular level by interpreting the host–guest chemistry and the role of framework pore topology. These molecular-level differences translate to cooling performance, which is described herein. These strategies include engineering framework porosity (i.e., pore size, pore volume) by using elongated organic linkers and stereochemistry control during synthesis; manipulating the sorbate/sorbent interaction by introducing functional moieties or unsaturated metal centers to enhance working capacities in narrow pressure ranges; varying pore topology/morphology to impact adsorption isotherm behavior; and leveraging defective sites within the frameworks to further enhance adsorption capability. This atomic level understanding of sorbate–sorbent interactions is conducted using various in situ experimental techniques such as synchrotron-based X-ray diffraction, X-ray absorption spectroscopy, in situ Fourier transform infrared spectroscopy, and direct sorption energies determinization with calorimetry. Moreover, the experimentally studied interactions and the corresponding adsorption mechanism are corroborated by computational studies using density functional theory (DFT) and grand canonical Monte Carlo (GCMC) simulations. Using this approach, we have made strides toward engineering designed frameworks with precise molecular control to target refrigerant molecules and thereby enhance the performance of desired working pairs for sorption-based cooling." @default.
- W4200402608 created "2021-12-31" @default.
- W4200402608 creator A5007943994 @default.
- W4200402608 creator A5014884614 @default.
- W4200402608 creator A5048773983 @default.
- W4200402608 creator A5090596598 @default.
- W4200402608 date "2021-12-27" @default.
- W4200402608 modified "2023-09-25" @default.
- W4200402608 title "Manipulating Pore Topology and Functionality to Promote Fluorocarbon-Based Adsorption Cooling" @default.
- W4200402608 cites W1908936090 @default.
- W4200402608 cites W1943588217 @default.
- W4200402608 cites W1967019083 @default.
- W4200402608 cites W1996369650 @default.
- W4200402608 cites W1997220190 @default.
- W4200402608 cites W1998053062 @default.
- W4200402608 cites W2003759419 @default.
- W4200402608 cites W2016539884 @default.
- W4200402608 cites W2019605074 @default.
- W4200402608 cites W2040825058 @default.
- W4200402608 cites W2042756320 @default.
- W4200402608 cites W2048320837 @default.
- W4200402608 cites W2053700726 @default.
- W4200402608 cites W2055968000 @default.
- W4200402608 cites W2059264601 @default.
- W4200402608 cites W2064099297 @default.
- W4200402608 cites W2079612517 @default.
- W4200402608 cites W2094005838 @default.
- W4200402608 cites W2118503802 @default.
- W4200402608 cites W2128972799 @default.
- W4200402608 cites W2131988676 @default.
- W4200402608 cites W2139980205 @default.
- W4200402608 cites W2163535530 @default.
- W4200402608 cites W2165816407 @default.
- W4200402608 cites W2259777538 @default.
- W4200402608 cites W2300914206 @default.
- W4200402608 cites W2431069983 @default.
- W4200402608 cites W2522247135 @default.
- W4200402608 cites W2531713938 @default.
- W4200402608 cites W2586186814 @default.
- W4200402608 cites W2589049809 @default.
- W4200402608 cites W2599685570 @default.
- W4200402608 cites W2735797865 @default.
- W4200402608 cites W2767992952 @default.
- W4200402608 cites W2770970173 @default.
- W4200402608 cites W2789612833 @default.
- W4200402608 cites W2887763439 @default.
- W4200402608 cites W2898521664 @default.
- W4200402608 cites W2899557879 @default.
- W4200402608 cites W2944542435 @default.
- W4200402608 cites W2959630468 @default.
- W4200402608 cites W2995983278 @default.
- W4200402608 cites W3001218623 @default.
- W4200402608 cites W3002481906 @default.
- W4200402608 cites W3024584558 @default.
- W4200402608 cites W3034620722 @default.
- W4200402608 cites W3047156543 @default.
- W4200402608 cites W3087025164 @default.
- W4200402608 cites W3092518791 @default.
- W4200402608 cites W3092555032 @default.
- W4200402608 cites W3094359911 @default.
- W4200402608 cites W3159651502 @default.
- W4200402608 cites W3212782984 @default.
- W4200402608 cites W4210950860 @default.
- W4200402608 cites W4251584022 @default.
- W4200402608 cites W438403339 @default.
- W4200402608 doi "https://doi.org/10.1021/acs.accounts.1c00615" @default.
- W4200402608 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34958192" @default.
- W4200402608 hasPublicationYear "2021" @default.
- W4200402608 type Work @default.
- W4200402608 citedByCount "5" @default.
- W4200402608 countsByYear W42004026082022 @default.
- W4200402608 crossrefType "journal-article" @default.
- W4200402608 hasAuthorship W4200402608A5007943994 @default.
- W4200402608 hasAuthorship W4200402608A5014884614 @default.
- W4200402608 hasAuthorship W4200402608A5048773983 @default.
- W4200402608 hasAuthorship W4200402608A5090596598 @default.
- W4200402608 hasBestOaLocation W42004026083 @default.
- W4200402608 hasConcept C107706546 @default.
- W4200402608 hasConcept C121332964 @default.
- W4200402608 hasConcept C127413603 @default.
- W4200402608 hasConcept C150394285 @default.
- W4200402608 hasConcept C162711632 @default.
- W4200402608 hasConcept C164915370 @default.
- W4200402608 hasConcept C178790620 @default.
- W4200402608 hasConcept C185592680 @default.
- W4200402608 hasConcept C192562407 @default.
- W4200402608 hasConcept C199499590 @default.
- W4200402608 hasConcept C21880701 @default.
- W4200402608 hasConcept C2777899863 @default.
- W4200402608 hasConcept C42360764 @default.
- W4200402608 hasConcept C4638862 @default.
- W4200402608 hasConcept C58445606 @default.
- W4200402608 hasConcept C69907114 @default.
- W4200402608 hasConcept C97355855 @default.
- W4200402608 hasConceptScore W4200402608C107706546 @default.
- W4200402608 hasConceptScore W4200402608C121332964 @default.
- W4200402608 hasConceptScore W4200402608C127413603 @default.
- W4200402608 hasConceptScore W4200402608C150394285 @default.