Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200409876> ?p ?o ?g. }
- W4200409876 endingPage "025601" @default.
- W4200409876 startingPage "025601" @default.
- W4200409876 abstract "Abstract The modified boundary integral equation method (MIM) is considered a rigorous theoretical application for the diffraction of cylindrical waves by arbitrary profiled plane gratings, as well as for the diffraction of plane/non-planar waves by concave/convex gratings. This study investigates 2D diffraction problems of the filiform source electromagnetic field scattered by a plane lamellar grating and of plane waves scattered by a similar cylindrical-shaped grating. Unlike the problem of plane wave diffraction by a plane grating, the field of a localised source does not satisfy the quasi-periodicity requirement. Fourier transform is used to reduce the solution of the problem of localised source diffraction by the grating in the whole region to the solution of the problem of diffraction inside one Floquet channel. By considering the periodicity of the geometry structure, the problem of Floquet terms for the image can be formulated so that it enables the application of the MIM developed for plane wave diffraction problems. Accounting of the local structure of an incident field enables both the prediction of the corresponding efficiencies and the specification of the bounds within which the approximation of the incident field with plane waves is correct. For 2D diffraction problems of the high-conductive plane grating irradiated by cylindrical waves and the cylindrical high-conductive grating irradiated by plane waves, decompositions in sets of plane waves/sections are investigated. The application of such decomposition, including the dependence on the number of plane waves/sections and radii of the grating and wave front shape, was demonstrated for lamellar, sinusoidal and saw-tooth grating examples in the 0th and −1st orders as well as in the transverse electric and transverse magnetic polarisations. The primary effects of plane wave/section partitions of non-planar wave fronts and curved grating shapes on the exact solutions for 2D and 3D (conical) diffraction problems are discussed." @default.
- W4200409876 created "2021-12-31" @default.
- W4200409876 creator A5087632276 @default.
- W4200409876 date "2022-01-04" @default.
- W4200409876 modified "2023-10-12" @default.
- W4200409876 title "Rigorous accounting diffraction on non-plane gratings irradiated by non-planar waves" @default.
- W4200409876 cites W1972607313 @default.
- W4200409876 cites W1976325927 @default.
- W4200409876 cites W1983911619 @default.
- W4200409876 cites W1991620814 @default.
- W4200409876 cites W1992103058 @default.
- W4200409876 cites W1997242486 @default.
- W4200409876 cites W2006154937 @default.
- W4200409876 cites W2008408806 @default.
- W4200409876 cites W2030527779 @default.
- W4200409876 cites W2039123430 @default.
- W4200409876 cites W2047719475 @default.
- W4200409876 cites W2049007136 @default.
- W4200409876 cites W2050263253 @default.
- W4200409876 cites W2094327240 @default.
- W4200409876 cites W2097239767 @default.
- W4200409876 cites W2112747475 @default.
- W4200409876 cites W2117755908 @default.
- W4200409876 cites W2131272283 @default.
- W4200409876 cites W2134822854 @default.
- W4200409876 cites W2145331656 @default.
- W4200409876 cites W2160154776 @default.
- W4200409876 cites W2160313664 @default.
- W4200409876 cites W2171886803 @default.
- W4200409876 cites W2330756478 @default.
- W4200409876 cites W2334961545 @default.
- W4200409876 cites W2551213613 @default.
- W4200409876 cites W2857251578 @default.
- W4200409876 cites W2891684174 @default.
- W4200409876 cites W3041968719 @default.
- W4200409876 cites W3081900187 @default.
- W4200409876 cites W3092015456 @default.
- W4200409876 cites W3109000232 @default.
- W4200409876 cites W3111460264 @default.
- W4200409876 cites W3158505245 @default.
- W4200409876 cites W3159728524 @default.
- W4200409876 cites W1995208784 @default.
- W4200409876 doi "https://doi.org/10.1088/2040-8986/ac4438" @default.
- W4200409876 hasPublicationYear "2022" @default.
- W4200409876 type Work @default.
- W4200409876 citedByCount "2" @default.
- W4200409876 countsByYear W42004098762022 @default.
- W4200409876 countsByYear W42004098762023 @default.
- W4200409876 crossrefType "journal-article" @default.
- W4200409876 hasAuthorship W4200409876A5087632276 @default.
- W4200409876 hasConcept C120665830 @default.
- W4200409876 hasConcept C121332964 @default.
- W4200409876 hasConcept C126753812 @default.
- W4200409876 hasConcept C1363856 @default.
- W4200409876 hasConcept C158622935 @default.
- W4200409876 hasConcept C17825722 @default.
- W4200409876 hasConcept C202444582 @default.
- W4200409876 hasConcept C207114421 @default.
- W4200409876 hasConcept C2524010 @default.
- W4200409876 hasConcept C2777813233 @default.
- W4200409876 hasConcept C33923547 @default.
- W4200409876 hasConcept C40308292 @default.
- W4200409876 hasConcept C55649039 @default.
- W4200409876 hasConcept C57616465 @default.
- W4200409876 hasConcept C62520636 @default.
- W4200409876 hasConcept C8685307 @default.
- W4200409876 hasConcept C9652623 @default.
- W4200409876 hasConceptScore W4200409876C120665830 @default.
- W4200409876 hasConceptScore W4200409876C121332964 @default.
- W4200409876 hasConceptScore W4200409876C126753812 @default.
- W4200409876 hasConceptScore W4200409876C1363856 @default.
- W4200409876 hasConceptScore W4200409876C158622935 @default.
- W4200409876 hasConceptScore W4200409876C17825722 @default.
- W4200409876 hasConceptScore W4200409876C202444582 @default.
- W4200409876 hasConceptScore W4200409876C207114421 @default.
- W4200409876 hasConceptScore W4200409876C2524010 @default.
- W4200409876 hasConceptScore W4200409876C2777813233 @default.
- W4200409876 hasConceptScore W4200409876C33923547 @default.
- W4200409876 hasConceptScore W4200409876C40308292 @default.
- W4200409876 hasConceptScore W4200409876C55649039 @default.
- W4200409876 hasConceptScore W4200409876C57616465 @default.
- W4200409876 hasConceptScore W4200409876C62520636 @default.
- W4200409876 hasConceptScore W4200409876C8685307 @default.
- W4200409876 hasConceptScore W4200409876C9652623 @default.
- W4200409876 hasFunder F4320324099 @default.
- W4200409876 hasFunder F4320327494 @default.
- W4200409876 hasIssue "2" @default.
- W4200409876 hasLocation W42004098761 @default.
- W4200409876 hasOpenAccess W4200409876 @default.
- W4200409876 hasPrimaryLocation W42004098761 @default.
- W4200409876 hasRelatedWork W2001103049 @default.
- W4200409876 hasRelatedWork W2003611157 @default.
- W4200409876 hasRelatedWork W2006154937 @default.
- W4200409876 hasRelatedWork W2054640396 @default.
- W4200409876 hasRelatedWork W2089744058 @default.
- W4200409876 hasRelatedWork W2163662401 @default.
- W4200409876 hasRelatedWork W2344367615 @default.
- W4200409876 hasRelatedWork W2352455245 @default.