Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200410483> ?p ?o ?g. }
- W4200410483 endingPage "1802" @default.
- W4200410483 startingPage "1790" @default.
- W4200410483 abstract "Map-Reduce is a programming model and an associated implementation for processing and generating large data sets. This model has a single point of failure: the master, who coordinates the work in a cluster. On the contrary, wireless sensor networks (WSNs) are distributed systems that scale and feature large numbers of small, computationally limited, low-power, unreliable nodes. In this article, we provide a top-down approach explaining the architecture, implementation and rationale of a distributed fault-tolerant IoT middleware. Specifically, this middleware consists of multiple mini-computing devices (Raspberry Pi) connected in a WSN which implement the Map-Reduce algorithm. First, we explain the tools used to develop this system. Second, we focus on the Map-Reduce algorithm implemented to overcome common network connectivity issues, as well as to enhance operation availability and reliability. Lastly, we provide benchmarks for our middleware as a crowd tracking application for a preserved building in Greece (i.e., M. Hatzidakis’ residence). The results of this study show that IoT middleware with low-power and low-cost components are viable solutions for medium-sized cloud computing distributed and parallel computing centres. Potential uses of this middleware apply for monitoring buildings and indoor structures, in addition to crowd tracking to prevent the spread of COVID-19." @default.
- W4200410483 created "2021-12-31" @default.
- W4200410483 creator A5078175687 @default.
- W4200410483 creator A5086055606 @default.
- W4200410483 date "2021-12-23" @default.
- W4200410483 modified "2023-10-02" @default.
- W4200410483 title "IoT Cloud Computing Middleware for Crowd Monitoring and Evacuation" @default.
- W4200410483 cites W1550815238 @default.
- W4200410483 cites W1582141055 @default.
- W4200410483 cites W1939512652 @default.
- W4200410483 cites W1986210179 @default.
- W4200410483 cites W2000687010 @default.
- W4200410483 cites W2011020535 @default.
- W4200410483 cites W2014013723 @default.
- W4200410483 cites W2019227001 @default.
- W4200410483 cites W2030059621 @default.
- W4200410483 cites W2032468740 @default.
- W4200410483 cites W2032812664 @default.
- W4200410483 cites W2047499528 @default.
- W4200410483 cites W2051197269 @default.
- W4200410483 cites W2057420573 @default.
- W4200410483 cites W2091072258 @default.
- W4200410483 cites W2141175342 @default.
- W4200410483 cites W2156092677 @default.
- W4200410483 cites W2173213060 @default.
- W4200410483 cites W2209002591 @default.
- W4200410483 cites W2241118198 @default.
- W4200410483 cites W2347184781 @default.
- W4200410483 cites W2519041509 @default.
- W4200410483 cites W2545520215 @default.
- W4200410483 cites W2556483642 @default.
- W4200410483 cites W2559341072 @default.
- W4200410483 cites W2586472645 @default.
- W4200410483 cites W2597831797 @default.
- W4200410483 cites W2598546180 @default.
- W4200410483 cites W2621452375 @default.
- W4200410483 cites W2730100072 @default.
- W4200410483 cites W2741713851 @default.
- W4200410483 cites W2762392833 @default.
- W4200410483 cites W2762588064 @default.
- W4200410483 cites W2767478150 @default.
- W4200410483 cites W2770271436 @default.
- W4200410483 cites W2771724871 @default.
- W4200410483 cites W2774234149 @default.
- W4200410483 cites W2791191836 @default.
- W4200410483 cites W2791691532 @default.
- W4200410483 cites W2794860015 @default.
- W4200410483 cites W2802051951 @default.
- W4200410483 cites W2807585131 @default.
- W4200410483 cites W2883760536 @default.
- W4200410483 cites W2891413102 @default.
- W4200410483 cites W2901111720 @default.
- W4200410483 cites W2901182774 @default.
- W4200410483 cites W2907482724 @default.
- W4200410483 cites W2913110641 @default.
- W4200410483 cites W2913816820 @default.
- W4200410483 cites W2914957672 @default.
- W4200410483 cites W2915110899 @default.
- W4200410483 cites W2919687790 @default.
- W4200410483 cites W2920310614 @default.
- W4200410483 cites W2938006989 @default.
- W4200410483 cites W2942221627 @default.
- W4200410483 cites W2953073112 @default.
- W4200410483 cites W2954779253 @default.
- W4200410483 cites W2958006772 @default.
- W4200410483 cites W2973683081 @default.
- W4200410483 cites W2982567936 @default.
- W4200410483 cites W2996304107 @default.
- W4200410483 cites W3002511615 @default.
- W4200410483 cites W3005735686 @default.
- W4200410483 cites W3008114246 @default.
- W4200410483 cites W3014200934 @default.
- W4200410483 cites W3015687342 @default.
- W4200410483 cites W3021083446 @default.
- W4200410483 cites W3024743437 @default.
- W4200410483 cites W3028904952 @default.
- W4200410483 cites W3037994948 @default.
- W4200410483 cites W3080538652 @default.
- W4200410483 cites W3081240553 @default.
- W4200410483 cites W3084913987 @default.
- W4200410483 cites W3101718302 @default.
- W4200410483 cites W3110979093 @default.
- W4200410483 cites W3112324902 @default.
- W4200410483 cites W3112740424 @default.
- W4200410483 cites W3117184614 @default.
- W4200410483 cites W3132317140 @default.
- W4200410483 cites W3153364778 @default.
- W4200410483 cites W3177447679 @default.
- W4200410483 cites W3191551895 @default.
- W4200410483 cites W31923072 @default.
- W4200410483 cites W3194608360 @default.
- W4200410483 cites W3213187933 @default.
- W4200410483 cites W3213630607 @default.
- W4200410483 cites W4211012425 @default.
- W4200410483 cites W968075907 @default.
- W4200410483 doi "https://doi.org/10.46300/9106.2021.15.193" @default.
- W4200410483 hasPublicationYear "2021" @default.
- W4200410483 type Work @default.