Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200410693> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W4200410693 abstract "Recently, the dental age estimation method developed by Cameriere has been widely recognized and accepted. Although machine learning (ML) methods can improve the accuracy of dental age estimation, no machine learning research exists on the use of the Cameriere dental age estimation method, making this research innovative and meaningful.The purpose of this research is to use 7 lower left permanent teeth and three models [random forest (RF), support vector machine (SVM), and linear regression (LR)] based on the Cameriere method to predict children's dental age, and compare with the Cameriere age estimation.This was a retrospective study that collected and analyzed orthopantomograms of 748 children (356 females and 392 males) aged 5-13 years. Data were randomly divided into training and test datasets in an 80-20% proportion for the ML algorithms. The procedure, starting with randomly creating new training and test datasets, was repeated 20 times. 7 permanent developing teeth on the left mandible (except wisdom teeth) were recorded using the Cameriere method. Then, the traditional Cameriere formula and three models (RF, SVM, and LR) were used to estimate the dental age. The age prediction accuracy was measured by five indicators: the coefficient of determination (R2), mean error (ME), root mean square error (RMSE), mean square error (MSE), and mean absolute error (MAE).The research showed that the ML models have better accuracy than the traditional Cameriere formula. The ME, MAE, MSE, and RMSE values of the SVM model (0.004, 0.489, 0.392, and 0.625, respectively) and the RF model (- 0.004, 0.495, 0.389, and 0.623, respectively) were lower with the highest accuracy. In contrast, the ME, MAE, MSE and RMSE of the European Cameriere formula were 0.592, 0.846, 0.755, and 0.869, respectively, and those of the Chinese Cameriere formula were 0.748, 0.812, 0.890 and 0.943, respectively.Compared to the Cameriere formula, ML methods based on the Cameriere's maturation stages were more accurate in estimating dental age. These results support the use of ML algorithms instead of the traditional Cameriere formula." @default.
- W4200410693 created "2021-12-31" @default.
- W4200410693 creator A5003718473 @default.
- W4200410693 creator A5017852951 @default.
- W4200410693 creator A5022996582 @default.
- W4200410693 creator A5032764121 @default.
- W4200410693 creator A5045989716 @default.
- W4200410693 creator A5091832997 @default.
- W4200410693 date "2021-12-01" @default.
- W4200410693 modified "2023-10-03" @default.
- W4200410693 title "Machine learning assisted Cameriere method for dental age estimation" @default.
- W4200410693 cites W1868199530 @default.
- W4200410693 cites W1970992510 @default.
- W4200410693 cites W1986209030 @default.
- W4200410693 cites W1986523350 @default.
- W4200410693 cites W1986912092 @default.
- W4200410693 cites W2000119452 @default.
- W4200410693 cites W2003064404 @default.
- W4200410693 cites W2072885344 @default.
- W4200410693 cites W2087691586 @default.
- W4200410693 cites W2130391470 @default.
- W4200410693 cites W2133777675 @default.
- W4200410693 cites W2136185262 @default.
- W4200410693 cites W2138593938 @default.
- W4200410693 cites W2139212933 @default.
- W4200410693 cites W2184549704 @default.
- W4200410693 cites W2231812544 @default.
- W4200410693 cites W2562514623 @default.
- W4200410693 cites W2745989420 @default.
- W4200410693 cites W2809774695 @default.
- W4200410693 cites W2894061438 @default.
- W4200410693 cites W2903408278 @default.
- W4200410693 cites W2932697162 @default.
- W4200410693 cites W2962840999 @default.
- W4200410693 cites W3003562648 @default.
- W4200410693 cites W3118854612 @default.
- W4200410693 cites W4230751125 @default.
- W4200410693 cites W4253621998 @default.
- W4200410693 doi "https://doi.org/10.1186/s12903-021-01996-0" @default.
- W4200410693 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34911516" @default.
- W4200410693 hasPublicationYear "2021" @default.
- W4200410693 type Work @default.
- W4200410693 citedByCount "15" @default.
- W4200410693 countsByYear W42004106932022 @default.
- W4200410693 countsByYear W42004106932023 @default.
- W4200410693 crossrefType "journal-article" @default.
- W4200410693 hasAuthorship W4200410693A5003718473 @default.
- W4200410693 hasAuthorship W4200410693A5017852951 @default.
- W4200410693 hasAuthorship W4200410693A5022996582 @default.
- W4200410693 hasAuthorship W4200410693A5032764121 @default.
- W4200410693 hasAuthorship W4200410693A5045989716 @default.
- W4200410693 hasAuthorship W4200410693A5091832997 @default.
- W4200410693 hasBestOaLocation W42004106931 @default.
- W4200410693 hasConcept C105795698 @default.
- W4200410693 hasConcept C12267149 @default.
- W4200410693 hasConcept C139945424 @default.
- W4200410693 hasConcept C154945302 @default.
- W4200410693 hasConcept C162324750 @default.
- W4200410693 hasConcept C187736073 @default.
- W4200410693 hasConcept C188154048 @default.
- W4200410693 hasConcept C199343813 @default.
- W4200410693 hasConcept C29694066 @default.
- W4200410693 hasConcept C33923547 @default.
- W4200410693 hasConcept C41008148 @default.
- W4200410693 hasConcept C71924100 @default.
- W4200410693 hasConcept C96250715 @default.
- W4200410693 hasConceptScore W4200410693C105795698 @default.
- W4200410693 hasConceptScore W4200410693C12267149 @default.
- W4200410693 hasConceptScore W4200410693C139945424 @default.
- W4200410693 hasConceptScore W4200410693C154945302 @default.
- W4200410693 hasConceptScore W4200410693C162324750 @default.
- W4200410693 hasConceptScore W4200410693C187736073 @default.
- W4200410693 hasConceptScore W4200410693C188154048 @default.
- W4200410693 hasConceptScore W4200410693C199343813 @default.
- W4200410693 hasConceptScore W4200410693C29694066 @default.
- W4200410693 hasConceptScore W4200410693C33923547 @default.
- W4200410693 hasConceptScore W4200410693C41008148 @default.
- W4200410693 hasConceptScore W4200410693C71924100 @default.
- W4200410693 hasConceptScore W4200410693C96250715 @default.
- W4200410693 hasIssue "1" @default.
- W4200410693 hasLocation W42004106931 @default.
- W4200410693 hasLocation W42004106932 @default.
- W4200410693 hasLocation W42004106933 @default.
- W4200410693 hasLocation W42004106934 @default.
- W4200410693 hasOpenAccess W4200410693 @default.
- W4200410693 hasPrimaryLocation W42004106931 @default.
- W4200410693 hasRelatedWork W2008453766 @default.
- W4200410693 hasRelatedWork W2023904223 @default.
- W4200410693 hasRelatedWork W2031738253 @default.
- W4200410693 hasRelatedWork W2065867141 @default.
- W4200410693 hasRelatedWork W2145613766 @default.
- W4200410693 hasRelatedWork W2605418509 @default.
- W4200410693 hasRelatedWork W2625413331 @default.
- W4200410693 hasRelatedWork W309072737 @default.
- W4200410693 hasRelatedWork W3121540092 @default.
- W4200410693 hasRelatedWork W3150644181 @default.
- W4200410693 hasVolume "21" @default.
- W4200410693 isParatext "false" @default.
- W4200410693 isRetracted "false" @default.
- W4200410693 workType "article" @default.