Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200412506> ?p ?o ?g. }
- W4200412506 endingPage "98" @default.
- W4200412506 startingPage "98" @default.
- W4200412506 abstract "Canopy chlorophyll content (CCC) is an important indicator for crop-growth monitoring and crop productivity estimation. The hybrid method, involving the PROSAIL radiative transfer model and machine learning algorithms, has been widely applied for crop CCC retrieval. However, PROSAIL’s homogeneous canopy hypothesis limits the ability to use the PROSAIL-based CCC estimation across different crops with a row structure. In addition to leaf area index (LAI), average leaf angle (ALA) is the most important canopy structure factor in the PROSAIL model. Under the same LAI, adjustment of the ALA can make a PROSAIL simulation obtain the same canopy gap as the heterogeneous canopy at a specific observation angle. Therefore, parameterization of an adjusted ALA (ALAadj) is an optimal choice to make the PROSAIL model suitable for specific row-planted crops. This paper attempted to improve PROSAIL-based CCC retrieval for different crops, using a random forest algorithm, by introducing the prior knowledge of crop-specific ALAadj. Based on the field reflectance spectrum at nadir, leaf area index, and leaf chlorophyll content, parameterization of the ALAadj in the PROSAIL model for wheat and soybean was carried out. An algorithm integrating the random forest and PROSAIL simulations with prior ALAadj information was developed for wheat and soybean CCC retrieval. Ground-measured CCC measurements were used to validate the CCC retrieved from canopy spectra. The results showed that the ALAadj values (62 degrees for wheat; 45 degrees for soybean) that were parameterized for the PROSAIL model demonstrated good discrimination between the two crops. The proposed algorithm improved the CCC retrieval accuracy for wheat and soybean, regardless of whether continuous visible to near-infrared spectra with 50 bands (RMSE from 39.9 to 32.9 μg cm−2; R2 from 0.67 to 0.76) or discrete spectra with 13 bands (RMSE from 43.9 to 33.7 μg cm−2; R2 from 0.63 to 0.74) and nine bands (RMSE from 45.1 to 37.0 μg cm−2; R2 from 0.61 to 0.71) were used. The proposed hybrid algorithm, based on PROSAIL simulations with ALAadj, has the potential for satellite-based CCC estimation across different crop types, and it also has a good reference value for the retrieval of other crop parameters." @default.
- W4200412506 created "2021-12-31" @default.
- W4200412506 creator A5002318539 @default.
- W4200412506 creator A5003778057 @default.
- W4200412506 creator A5009182769 @default.
- W4200412506 creator A5036386497 @default.
- W4200412506 creator A5036811508 @default.
- W4200412506 creator A5045473616 @default.
- W4200412506 creator A5049898739 @default.
- W4200412506 creator A5073308867 @default.
- W4200412506 date "2021-12-25" @default.
- W4200412506 modified "2023-10-14" @default.
- W4200412506 title "A Random Forest Algorithm for Retrieving Canopy Chlorophyll Content of Wheat and Soybean Trained with PROSAIL Simulations Using Adjusted Average Leaf Angle" @default.
- W4200412506 cites W1492535524 @default.
- W4200412506 cites W1966675249 @default.
- W4200412506 cites W1970217081 @default.
- W4200412506 cites W1978160572 @default.
- W4200412506 cites W1979649479 @default.
- W4200412506 cites W1980733899 @default.
- W4200412506 cites W1987139340 @default.
- W4200412506 cites W1988269748 @default.
- W4200412506 cites W1988942299 @default.
- W4200412506 cites W1990572727 @default.
- W4200412506 cites W1991449958 @default.
- W4200412506 cites W2003939279 @default.
- W4200412506 cites W2003944446 @default.
- W4200412506 cites W2018627383 @default.
- W4200412506 cites W2028584895 @default.
- W4200412506 cites W2034085189 @default.
- W4200412506 cites W2039768055 @default.
- W4200412506 cites W2052256290 @default.
- W4200412506 cites W2054497277 @default.
- W4200412506 cites W2066612219 @default.
- W4200412506 cites W2094677081 @default.
- W4200412506 cites W2101010747 @default.
- W4200412506 cites W2102144990 @default.
- W4200412506 cites W2109006150 @default.
- W4200412506 cites W2114348788 @default.
- W4200412506 cites W2121025745 @default.
- W4200412506 cites W2124459984 @default.
- W4200412506 cites W2128438912 @default.
- W4200412506 cites W2129719999 @default.
- W4200412506 cites W2135369598 @default.
- W4200412506 cites W2141565621 @default.
- W4200412506 cites W2142649963 @default.
- W4200412506 cites W2146754899 @default.
- W4200412506 cites W2159961845 @default.
- W4200412506 cites W2163410149 @default.
- W4200412506 cites W2163663580 @default.
- W4200412506 cites W2167248655 @default.
- W4200412506 cites W2168244392 @default.
- W4200412506 cites W2188115011 @default.
- W4200412506 cites W2261059368 @default.
- W4200412506 cites W2317582304 @default.
- W4200412506 cites W2461497717 @default.
- W4200412506 cites W2516419770 @default.
- W4200412506 cites W2563119511 @default.
- W4200412506 cites W2565157507 @default.
- W4200412506 cites W2593914677 @default.
- W4200412506 cites W2596051487 @default.
- W4200412506 cites W2771841295 @default.
- W4200412506 cites W2782772130 @default.
- W4200412506 cites W2790606741 @default.
- W4200412506 cites W2888623692 @default.
- W4200412506 cites W2899758354 @default.
- W4200412506 cites W2911964244 @default.
- W4200412506 cites W2914208851 @default.
- W4200412506 cites W2935876239 @default.
- W4200412506 cites W2940512980 @default.
- W4200412506 cites W2946683773 @default.
- W4200412506 cites W3018738979 @default.
- W4200412506 cites W3031029303 @default.
- W4200412506 cites W3042854295 @default.
- W4200412506 cites W3044808847 @default.
- W4200412506 cites W3080921188 @default.
- W4200412506 cites W3109126425 @default.
- W4200412506 cites W3128164063 @default.
- W4200412506 cites W3128430657 @default.
- W4200412506 cites W3130858219 @default.
- W4200412506 cites W3182299891 @default.
- W4200412506 cites W3196557703 @default.
- W4200412506 cites W52417668 @default.
- W4200412506 cites W568010113 @default.
- W4200412506 cites W633320881 @default.
- W4200412506 doi "https://doi.org/10.3390/rs14010098" @default.
- W4200412506 hasPublicationYear "2021" @default.
- W4200412506 type Work @default.
- W4200412506 citedByCount "16" @default.
- W4200412506 countsByYear W42004125062022 @default.
- W4200412506 countsByYear W42004125062023 @default.
- W4200412506 crossrefType "journal-article" @default.
- W4200412506 hasAuthorship W4200412506A5002318539 @default.
- W4200412506 hasAuthorship W4200412506A5003778057 @default.
- W4200412506 hasAuthorship W4200412506A5009182769 @default.
- W4200412506 hasAuthorship W4200412506A5036386497 @default.
- W4200412506 hasAuthorship W4200412506A5036811508 @default.
- W4200412506 hasAuthorship W4200412506A5045473616 @default.
- W4200412506 hasAuthorship W4200412506A5049898739 @default.