Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200414142> ?p ?o ?g. }
- W4200414142 endingPage "108773" @default.
- W4200414142 startingPage "108773" @default.
- W4200414142 abstract "• This study presents a probabilistic crop yield prediction framework • Bayesian multi-modeling is used to integrate multiple Deep NNs outputs • Probabilistic soybean crop yield estimation was provided across three states in the United States An imperative aspect of agricultural planning is accurate yield prediction. Artificial Intelligence (AI) techniques, such as Deep Learning (DL), have been recognized as effective means for achieving practical solutions to this problem. However, these approaches most often provide deterministic estimates and do not account for the uncertainties involved in model predictions. This study presents a framework that employs the Bayesian Model Averaging (BMA) and a set of Copula functions to integrate the outputs of multiple deep neural networks, including the 3DCNN (3D Convolutional Neural Network) and ConvLSTM (Convolutional Long Short-Term Memory), and provides a probabilistic estimate of soybean crop yield over a hundred counties across three states in the United States. The results of this study show that the proposed approach produces more accurate and reliable soybean crop yield predictions than the 3DCNN and ConvLSTM networks alone while accounting for the models’ uncertainties." @default.
- W4200414142 created "2021-12-31" @default.
- W4200414142 creator A5021440982 @default.
- W4200414142 creator A5026811888 @default.
- W4200414142 creator A5037342105 @default.
- W4200414142 creator A5054026606 @default.
- W4200414142 creator A5084456957 @default.
- W4200414142 date "2022-03-01" @default.
- W4200414142 modified "2023-09-29" @default.
- W4200414142 title "Bayesian Multi-modeling of Deep Neural Nets for Probabilistic Crop Yield Prediction" @default.
- W4200414142 cites W1548836529 @default.
- W4200414142 cites W1856120920 @default.
- W4200414142 cites W1967720470 @default.
- W4200414142 cites W1968496754 @default.
- W4200414142 cites W1982627164 @default.
- W4200414142 cites W1983364832 @default.
- W4200414142 cites W1987415163 @default.
- W4200414142 cites W1990779154 @default.
- W4200414142 cites W1994672023 @default.
- W4200414142 cites W2009435671 @default.
- W4200414142 cites W2013765062 @default.
- W4200414142 cites W2019352814 @default.
- W4200414142 cites W2028147019 @default.
- W4200414142 cites W2048089440 @default.
- W4200414142 cites W2057331441 @default.
- W4200414142 cites W2064675550 @default.
- W4200414142 cites W2081652617 @default.
- W4200414142 cites W2118921617 @default.
- W4200414142 cites W2147800946 @default.
- W4200414142 cites W2156588169 @default.
- W4200414142 cites W2158840489 @default.
- W4200414142 cites W2161020850 @default.
- W4200414142 cites W2200121095 @default.
- W4200414142 cites W2202019762 @default.
- W4200414142 cites W2337031030 @default.
- W4200414142 cites W2416782259 @default.
- W4200414142 cites W2618159897 @default.
- W4200414142 cites W2692909408 @default.
- W4200414142 cites W2730080717 @default.
- W4200414142 cites W2755766995 @default.
- W4200414142 cites W2763128055 @default.
- W4200414142 cites W2764276316 @default.
- W4200414142 cites W2783608381 @default.
- W4200414142 cites W2791138313 @default.
- W4200414142 cites W2805142011 @default.
- W4200414142 cites W2953686964 @default.
- W4200414142 cites W2963131120 @default.
- W4200414142 cites W2980650665 @default.
- W4200414142 cites W2980994438 @default.
- W4200414142 cites W3000098473 @default.
- W4200414142 cites W3002367342 @default.
- W4200414142 cites W3011089930 @default.
- W4200414142 cites W3034540853 @default.
- W4200414142 cites W3047725858 @default.
- W4200414142 cites W3083198366 @default.
- W4200414142 cites W3133731232 @default.
- W4200414142 cites W3182380878 @default.
- W4200414142 cites W4249395738 @default.
- W4200414142 doi "https://doi.org/10.1016/j.agrformet.2021.108773" @default.
- W4200414142 hasPublicationYear "2022" @default.
- W4200414142 type Work @default.
- W4200414142 citedByCount "27" @default.
- W4200414142 countsByYear W42004141422022 @default.
- W4200414142 countsByYear W42004141422023 @default.
- W4200414142 crossrefType "journal-article" @default.
- W4200414142 hasAuthorship W4200414142A5021440982 @default.
- W4200414142 hasAuthorship W4200414142A5026811888 @default.
- W4200414142 hasAuthorship W4200414142A5037342105 @default.
- W4200414142 hasAuthorship W4200414142A5054026606 @default.
- W4200414142 hasAuthorship W4200414142A5084456957 @default.
- W4200414142 hasConcept C107673813 @default.
- W4200414142 hasConcept C108583219 @default.
- W4200414142 hasConcept C114289077 @default.
- W4200414142 hasConcept C119857082 @default.
- W4200414142 hasConcept C126343540 @default.
- W4200414142 hasConcept C149782125 @default.
- W4200414142 hasConcept C154945302 @default.
- W4200414142 hasConcept C160234255 @default.
- W4200414142 hasConcept C17618745 @default.
- W4200414142 hasConcept C177264268 @default.
- W4200414142 hasConcept C199360897 @default.
- W4200414142 hasConcept C33724603 @default.
- W4200414142 hasConcept C33923547 @default.
- W4200414142 hasConcept C41008148 @default.
- W4200414142 hasConcept C49937458 @default.
- W4200414142 hasConcept C50644808 @default.
- W4200414142 hasConcept C6557445 @default.
- W4200414142 hasConcept C81363708 @default.
- W4200414142 hasConcept C86803240 @default.
- W4200414142 hasConceptScore W4200414142C107673813 @default.
- W4200414142 hasConceptScore W4200414142C108583219 @default.
- W4200414142 hasConceptScore W4200414142C114289077 @default.
- W4200414142 hasConceptScore W4200414142C119857082 @default.
- W4200414142 hasConceptScore W4200414142C126343540 @default.
- W4200414142 hasConceptScore W4200414142C149782125 @default.
- W4200414142 hasConceptScore W4200414142C154945302 @default.
- W4200414142 hasConceptScore W4200414142C160234255 @default.
- W4200414142 hasConceptScore W4200414142C17618745 @default.