Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200417143> ?p ?o ?g. }
- W4200417143 endingPage "103345" @default.
- W4200417143 startingPage "103345" @default.
- W4200417143 abstract "Weather is a pivotal factor for crop production as it is highly volatile and can hardly be controlled by farm management practices. Since there is a tendency towards increased weather extremes in the future, understanding weather-related yield factors becomes increasingly important not only for yield prediction, but also for the design of insurance products. Although insurance products mitigate financial losses for farmers, they suffer from considerable basis risk, i.e., a discrepancy between losses and the indemnity payment. The objective of this paper was to explore the potential of machine learning for estimating the relationship between crop yield and weather conditions at the farm level and to use it as a tool for reducing basis risk in index insurance applications. An artificial neural network was set up and calibrated to a rich set of farm-level yield data in Germany, covering the period from 2003 to 2018. A nonlinear regression model, which uses rainfall, temperature, and soil moisture as explanatory variables for yield deviations, served as a benchmark. The empirical application revealed that compared with traditional estimation approaches, the gain in forecasting precision by using machine learning techniques was substantial. Moreover, the use of regionalized models and disaggregated high-resolution weather data improved the performance of artificial neural networks. A considerable part of yield variability at the farm level, however, could not be captured by statistical methods which solely use “big weather data”. Our findings have important implications for the design of weather-index based insurance because they document that a rather high level of basis risk remains if insurance products are based on an estimation of the weather-yield relationship." @default.
- W4200417143 created "2021-12-31" @default.
- W4200417143 creator A5031230927 @default.
- W4200417143 creator A5038402487 @default.
- W4200417143 creator A5066905237 @default.
- W4200417143 creator A5072069435 @default.
- W4200417143 date "2022-02-01" @default.
- W4200417143 modified "2023-09-25" @default.
- W4200417143 title "Exploring the weather-yield nexus with artificial neural networks" @default.
- W4200417143 cites W1586556554 @default.
- W4200417143 cites W1968764626 @default.
- W4200417143 cites W2002361404 @default.
- W4200417143 cites W2007214384 @default.
- W4200417143 cites W2057805968 @default.
- W4200417143 cites W2061161880 @default.
- W4200417143 cites W2071498039 @default.
- W4200417143 cites W2081132054 @default.
- W4200417143 cites W2081757228 @default.
- W4200417143 cites W2109470938 @default.
- W4200417143 cites W2118143401 @default.
- W4200417143 cites W2151604573 @default.
- W4200417143 cites W2161994757 @default.
- W4200417143 cites W2166238316 @default.
- W4200417143 cites W2337031030 @default.
- W4200417143 cites W2416782259 @default.
- W4200417143 cites W2514319723 @default.
- W4200417143 cites W2541024173 @default.
- W4200417143 cites W2606890070 @default.
- W4200417143 cites W2623126562 @default.
- W4200417143 cites W2741683788 @default.
- W4200417143 cites W2782262584 @default.
- W4200417143 cites W2793801767 @default.
- W4200417143 cites W2891765392 @default.
- W4200417143 cites W2943202724 @default.
- W4200417143 cites W2944139570 @default.
- W4200417143 cites W2946107406 @default.
- W4200417143 cites W3023749467 @default.
- W4200417143 cites W3028374510 @default.
- W4200417143 cites W3029014910 @default.
- W4200417143 cites W3036779368 @default.
- W4200417143 cites W3040411089 @default.
- W4200417143 cites W3079760979 @default.
- W4200417143 cites W3084857842 @default.
- W4200417143 cites W3088006514 @default.
- W4200417143 cites W3098019734 @default.
- W4200417143 cites W3102148818 @default.
- W4200417143 cites W3103444592 @default.
- W4200417143 cites W3122287636 @default.
- W4200417143 cites W3129976562 @default.
- W4200417143 cites W3131010947 @default.
- W4200417143 cites W3135871359 @default.
- W4200417143 cites W3164419424 @default.
- W4200417143 cites W4200341517 @default.
- W4200417143 doi "https://doi.org/10.1016/j.agsy.2021.103345" @default.
- W4200417143 hasPublicationYear "2022" @default.
- W4200417143 type Work @default.
- W4200417143 citedByCount "3" @default.
- W4200417143 countsByYear W42004171432022 @default.
- W4200417143 countsByYear W42004171432023 @default.
- W4200417143 crossrefType "journal-article" @default.
- W4200417143 hasAuthorship W4200417143A5031230927 @default.
- W4200417143 hasAuthorship W4200417143A5038402487 @default.
- W4200417143 hasAuthorship W4200417143A5066905237 @default.
- W4200417143 hasAuthorship W4200417143A5072069435 @default.
- W4200417143 hasBestOaLocation W42004171431 @default.
- W4200417143 hasConcept C118518473 @default.
- W4200417143 hasConcept C119857082 @default.
- W4200417143 hasConcept C134121241 @default.
- W4200417143 hasConcept C136764020 @default.
- W4200417143 hasConcept C149782125 @default.
- W4200417143 hasConcept C162118730 @default.
- W4200417143 hasConcept C162324750 @default.
- W4200417143 hasConcept C166957645 @default.
- W4200417143 hasConcept C169029255 @default.
- W4200417143 hasConcept C181236170 @default.
- W4200417143 hasConcept C191897082 @default.
- W4200417143 hasConcept C192562407 @default.
- W4200417143 hasConcept C205649164 @default.
- W4200417143 hasConcept C2777382242 @default.
- W4200417143 hasConcept C2777802595 @default.
- W4200417143 hasConcept C2779785115 @default.
- W4200417143 hasConcept C39432304 @default.
- W4200417143 hasConcept C41008148 @default.
- W4200417143 hasConcept C50644808 @default.
- W4200417143 hasConcept C84525736 @default.
- W4200417143 hasConceptScore W4200417143C118518473 @default.
- W4200417143 hasConceptScore W4200417143C119857082 @default.
- W4200417143 hasConceptScore W4200417143C134121241 @default.
- W4200417143 hasConceptScore W4200417143C136764020 @default.
- W4200417143 hasConceptScore W4200417143C149782125 @default.
- W4200417143 hasConceptScore W4200417143C162118730 @default.
- W4200417143 hasConceptScore W4200417143C162324750 @default.
- W4200417143 hasConceptScore W4200417143C166957645 @default.
- W4200417143 hasConceptScore W4200417143C169029255 @default.
- W4200417143 hasConceptScore W4200417143C181236170 @default.
- W4200417143 hasConceptScore W4200417143C191897082 @default.
- W4200417143 hasConceptScore W4200417143C192562407 @default.
- W4200417143 hasConceptScore W4200417143C205649164 @default.