Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200417222> ?p ?o ?g. }
- W4200417222 endingPage "43" @default.
- W4200417222 startingPage "43" @default.
- W4200417222 abstract "In this study, an adaptive nonsingular finite time control technique based on a barrier function terminal sliding mode controller is proposed for the robust stability of nth-order nonlinear dynamic systems with external disturbances. The barrier function adaptive terminal sliding mode control makes the convergence of tracking errors to a region near zero in the finite time. Moreover, the suggested method does not need the information of upper bounds of perturbations which are commonly applied to the sliding mode control procedure. The Lyapunov stability analysis proves that the errors converge to the determined region. Last of all, simulations and experimental results on a complex new chaotic system with a high Kaplan–Yorke dimension are provided to confirm the efficacy of the planned method. The results demonstrate that the suggested controller has a stronger tracking than the adaptive controller and the results are satisfactory with the application of the controller based on chaotic synchronization on the chaotic system." @default.
- W4200417222 created "2021-12-31" @default.
- W4200417222 creator A5017618987 @default.
- W4200417222 creator A5026194474 @default.
- W4200417222 creator A5055705654 @default.
- W4200417222 creator A5068858971 @default.
- W4200417222 creator A5071113451 @default.
- W4200417222 creator A5077904907 @default.
- W4200417222 creator A5091551628 @default.
- W4200417222 date "2021-12-23" @default.
- W4200417222 modified "2023-10-01" @default.
- W4200417222 title "Nonsingular Terminal Sliding Mode Control Based on Adaptive Barrier Function for nth-Order Perturbed Nonlinear Systems" @default.
- W4200417222 cites W1956020520 @default.
- W4200417222 cites W2018522871 @default.
- W4200417222 cites W2024266785 @default.
- W4200417222 cites W2041069066 @default.
- W4200417222 cites W2769679916 @default.
- W4200417222 cites W2774929780 @default.
- W4200417222 cites W2775852728 @default.
- W4200417222 cites W2792038185 @default.
- W4200417222 cites W2793097237 @default.
- W4200417222 cites W2794878407 @default.
- W4200417222 cites W2802743206 @default.
- W4200417222 cites W2890485595 @default.
- W4200417222 cites W2923580841 @default.
- W4200417222 cites W2948689568 @default.
- W4200417222 cites W2981427042 @default.
- W4200417222 cites W3000246885 @default.
- W4200417222 cites W3007355203 @default.
- W4200417222 cites W3021163607 @default.
- W4200417222 cites W3023092062 @default.
- W4200417222 cites W3045408156 @default.
- W4200417222 cites W3098941304 @default.
- W4200417222 cites W3111849545 @default.
- W4200417222 cites W3128518041 @default.
- W4200417222 cites W3165377698 @default.
- W4200417222 cites W3166362491 @default.
- W4200417222 cites W3185404190 @default.
- W4200417222 cites W3188981964 @default.
- W4200417222 cites W3196936257 @default.
- W4200417222 cites W3197711795 @default.
- W4200417222 cites W3198932159 @default.
- W4200417222 cites W3206845941 @default.
- W4200417222 cites W3208627612 @default.
- W4200417222 cites W3208720258 @default.
- W4200417222 cites W4233705691 @default.
- W4200417222 cites W63636488 @default.
- W4200417222 doi "https://doi.org/10.3390/math10010043" @default.
- W4200417222 hasPublicationYear "2021" @default.
- W4200417222 type Work @default.
- W4200417222 citedByCount "10" @default.
- W4200417222 countsByYear W42004172222022 @default.
- W4200417222 countsByYear W42004172222023 @default.
- W4200417222 crossrefType "journal-article" @default.
- W4200417222 hasAuthorship W4200417222A5017618987 @default.
- W4200417222 hasAuthorship W4200417222A5026194474 @default.
- W4200417222 hasAuthorship W4200417222A5055705654 @default.
- W4200417222 hasAuthorship W4200417222A5068858971 @default.
- W4200417222 hasAuthorship W4200417222A5071113451 @default.
- W4200417222 hasAuthorship W4200417222A5077904907 @default.
- W4200417222 hasAuthorship W4200417222A5091551628 @default.
- W4200417222 hasBestOaLocation W42004172221 @default.
- W4200417222 hasConcept C107464732 @default.
- W4200417222 hasConcept C114614502 @default.
- W4200417222 hasConcept C121332964 @default.
- W4200417222 hasConcept C14036430 @default.
- W4200417222 hasConcept C154945302 @default.
- W4200417222 hasConcept C158622935 @default.
- W4200417222 hasConcept C162324750 @default.
- W4200417222 hasConcept C184720557 @default.
- W4200417222 hasConcept C203479927 @default.
- W4200417222 hasConcept C2775924081 @default.
- W4200417222 hasConcept C2776829284 @default.
- W4200417222 hasConcept C2777052490 @default.
- W4200417222 hasConcept C2777303404 @default.
- W4200417222 hasConcept C2777539142 @default.
- W4200417222 hasConcept C2778562939 @default.
- W4200417222 hasConcept C33923547 @default.
- W4200417222 hasConcept C36662352 @default.
- W4200417222 hasConcept C41008148 @default.
- W4200417222 hasConcept C47446073 @default.
- W4200417222 hasConcept C50522688 @default.
- W4200417222 hasConcept C60640748 @default.
- W4200417222 hasConcept C62520636 @default.
- W4200417222 hasConcept C6557445 @default.
- W4200417222 hasConcept C78458016 @default.
- W4200417222 hasConcept C86803240 @default.
- W4200417222 hasConceptScore W4200417222C107464732 @default.
- W4200417222 hasConceptScore W4200417222C114614502 @default.
- W4200417222 hasConceptScore W4200417222C121332964 @default.
- W4200417222 hasConceptScore W4200417222C14036430 @default.
- W4200417222 hasConceptScore W4200417222C154945302 @default.
- W4200417222 hasConceptScore W4200417222C158622935 @default.
- W4200417222 hasConceptScore W4200417222C162324750 @default.
- W4200417222 hasConceptScore W4200417222C184720557 @default.
- W4200417222 hasConceptScore W4200417222C203479927 @default.
- W4200417222 hasConceptScore W4200417222C2775924081 @default.
- W4200417222 hasConceptScore W4200417222C2776829284 @default.