Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200424963> ?p ?o ?g. }
- W4200424963 endingPage "024001" @default.
- W4200424963 startingPage "024001" @default.
- W4200424963 abstract "Abstract Objective. Delineating swallowing and chewing structures aids in radiotherapy (RT) treatment planning to limit dysphagia, trismus, and speech dysfunction. We aim to develop an accurate and efficient method to automate this process. Approach. CT scans of 242 head and neck (H&N) cancer patients acquired from 2004 to 2009 at our institution were used to develop auto-segmentation models for the masseters, medial pterygoids, larynx, and pharyngeal constrictor muscle using DeepLabV3+. A cascaded framework was used, wherein models were trained sequentially to spatially constrain each structure group based on prior segmentations. Additionally, an ensemble of models, combining contextual information from axial, coronal, and sagittal views was used to improve segmentation accuracy. Prospective evaluation was conducted by measuring the amount of manual editing required in 91 H&N CT scans acquired February-May 2021. Main results . Medians and inter-quartile ranges of Dice similarity coefficients (DSC) computed on the retrospective testing set ( N = 24) were 0.87 (0.85–0.89) for the masseters, 0.80 (0.79–0.81) for the medial pterygoids, 0.81 (0.79–0.84) for the larynx, and 0.69 (0.67–0.71) for the constrictor. Auto-segmentations, when compared to two sets of manual segmentations in 10 randomly selected scans, showed better agreement (DSC) with each observer than inter-observer DSC. Prospective analysis showed most manual modifications needed for clinical use were minor, suggesting auto-contouring could increase clinical efficiency. Trained segmentation models are available for research use upon request via https://github.com/cerr/CERR/wiki/Auto-Segmentation-models . Significance. We developed deep learning-based auto-segmentation models for swallowing and chewing structures in CT and demonstrated its potential for use in treatment planning to limit complications post-RT. To the best of our knowledge, this is the only prospectively-validated deep learning-based model for segmenting chewing and swallowing structures in CT. Segmentation models have been made open-source to facilitate reproducibility and multi-institutional research." @default.
- W4200424963 created "2021-12-31" @default.
- W4200424963 creator A5014597008 @default.
- W4200424963 creator A5015992511 @default.
- W4200424963 creator A5025425477 @default.
- W4200424963 creator A5026159944 @default.
- W4200424963 creator A5035407370 @default.
- W4200424963 creator A5042683392 @default.
- W4200424963 creator A5052610122 @default.
- W4200424963 creator A5061457064 @default.
- W4200424963 creator A5075085778 @default.
- W4200424963 creator A5085580649 @default.
- W4200424963 creator A5087914049 @default.
- W4200424963 creator A5088189613 @default.
- W4200424963 date "2022-01-17" @default.
- W4200424963 modified "2023-09-23" @default.
- W4200424963 title "Prospectively-validated deep learning model for segmenting swallowing and chewing structures in CT" @default.
- W4200424963 cites W1509957145 @default.
- W4200424963 cites W1901129140 @default.
- W4200424963 cites W1966764112 @default.
- W4200424963 cites W1988832131 @default.
- W4200424963 cites W2028129509 @default.
- W4200424963 cites W2057691621 @default.
- W4200424963 cites W2066511532 @default.
- W4200424963 cites W2074271088 @default.
- W4200424963 cites W2121138325 @default.
- W4200424963 cites W2142800221 @default.
- W4200424963 cites W2167531303 @default.
- W4200424963 cites W2168650498 @default.
- W4200424963 cites W2194775991 @default.
- W4200424963 cites W2560725027 @default.
- W4200424963 cites W2613409207 @default.
- W4200424963 cites W2767966507 @default.
- W4200424963 cites W2808686531 @default.
- W4200424963 cites W2888667538 @default.
- W4200424963 cites W2900237898 @default.
- W4200424963 cites W2910347321 @default.
- W4200424963 cites W2920291762 @default.
- W4200424963 cites W2964309882 @default.
- W4200424963 cites W2979472178 @default.
- W4200424963 cites W2980004241 @default.
- W4200424963 cites W2994739006 @default.
- W4200424963 cites W2995681261 @default.
- W4200424963 cites W3022763969 @default.
- W4200424963 cites W3035067918 @default.
- W4200424963 cites W3134671041 @default.
- W4200424963 cites W3137924529 @default.
- W4200424963 cites W3180629942 @default.
- W4200424963 doi "https://doi.org/10.1088/1361-6560/ac4000" @default.
- W4200424963 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34874302" @default.
- W4200424963 hasPublicationYear "2022" @default.
- W4200424963 type Work @default.
- W4200424963 citedByCount "11" @default.
- W4200424963 countsByYear W42004249632022 @default.
- W4200424963 countsByYear W42004249632023 @default.
- W4200424963 crossrefType "journal-article" @default.
- W4200424963 hasAuthorship W4200424963A5014597008 @default.
- W4200424963 hasAuthorship W4200424963A5015992511 @default.
- W4200424963 hasAuthorship W4200424963A5025425477 @default.
- W4200424963 hasAuthorship W4200424963A5026159944 @default.
- W4200424963 hasAuthorship W4200424963A5035407370 @default.
- W4200424963 hasAuthorship W4200424963A5042683392 @default.
- W4200424963 hasAuthorship W4200424963A5052610122 @default.
- W4200424963 hasAuthorship W4200424963A5061457064 @default.
- W4200424963 hasAuthorship W4200424963A5075085778 @default.
- W4200424963 hasAuthorship W4200424963A5085580649 @default.
- W4200424963 hasAuthorship W4200424963A5087914049 @default.
- W4200424963 hasAuthorship W4200424963A5088189613 @default.
- W4200424963 hasBestOaLocation W42004249632 @default.
- W4200424963 hasConcept C112497637 @default.
- W4200424963 hasConcept C121684516 @default.
- W4200424963 hasConcept C126838900 @default.
- W4200424963 hasConcept C141071460 @default.
- W4200424963 hasConcept C154945302 @default.
- W4200424963 hasConcept C2779104521 @default.
- W4200424963 hasConcept C2780474809 @default.
- W4200424963 hasConcept C2780596822 @default.
- W4200424963 hasConcept C2989005 @default.
- W4200424963 hasConcept C41008148 @default.
- W4200424963 hasConcept C71924100 @default.
- W4200424963 hasConcept C89600930 @default.
- W4200424963 hasConceptScore W4200424963C112497637 @default.
- W4200424963 hasConceptScore W4200424963C121684516 @default.
- W4200424963 hasConceptScore W4200424963C126838900 @default.
- W4200424963 hasConceptScore W4200424963C141071460 @default.
- W4200424963 hasConceptScore W4200424963C154945302 @default.
- W4200424963 hasConceptScore W4200424963C2779104521 @default.
- W4200424963 hasConceptScore W4200424963C2780474809 @default.
- W4200424963 hasConceptScore W4200424963C2780596822 @default.
- W4200424963 hasConceptScore W4200424963C2989005 @default.
- W4200424963 hasConceptScore W4200424963C41008148 @default.
- W4200424963 hasConceptScore W4200424963C71924100 @default.
- W4200424963 hasConceptScore W4200424963C89600930 @default.
- W4200424963 hasFunder F4320332161 @default.
- W4200424963 hasFunder F4320337351 @default.
- W4200424963 hasIssue "2" @default.
- W4200424963 hasLocation W42004249631 @default.
- W4200424963 hasLocation W42004249632 @default.