Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200429502> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4200429502 endingPage "102214" @default.
- W4200429502 startingPage "102214" @default.
- W4200429502 abstract "Big data era in healthcare led to the generation of high dimensional datasets like genomic datasets, electronic health records etc. One among the critical issues to be addressed in such datasets is handling incomplete data that may yield misleading results if not handled properly. Imputation is considered to be an effective way when the missing data rate is high. While imputation accuracy and classification accuracy are the two important metrics generally considered by most of the imputation techniques, high dimensional datasets such as genomic datasets motivated the need for imputation techniques that are also computationally efficient and preserves the structure of the dataset. This paper proposes a novel approach to missing data imputation in biomedical datasets using an ensemble of deeply learned clustering and L2 regularized regression based on symmetric uncertainty. The experiments are conducted with different proportion of missing data on both genomic and non-genomic biomedical datasets for different types of missingness pattern. Our proposed approach is compared with seven proven baseline imputation methods and two recently proposed imputation approaches. The results show that the proposed approach outperforms the other approaches considered in our experimentation in terms of imputation accuracy and computational efficiency despite preserving the structure of the dataset. Thus, the overall classification accuracy of the biomedical classification tasks is also improved when our proposed missing data imputation technique is used." @default.
- W4200429502 created "2021-12-31" @default.
- W4200429502 creator A5010241384 @default.
- W4200429502 creator A5026560643 @default.
- W4200429502 date "2022-01-01" @default.
- W4200429502 modified "2023-10-17" @default.
- W4200429502 title "Missing data imputation on biomedical data using deeply learned clustering and L2 regularized regression based on symmetric uncertainty" @default.
- W4200429502 cites W1845661996 @default.
- W4200429502 cites W1849547295 @default.
- W4200429502 cites W1965973862 @default.
- W4200429502 cites W1977185509 @default.
- W4200429502 cites W1981883771 @default.
- W4200429502 cites W1997437882 @default.
- W4200429502 cites W1998780131 @default.
- W4200429502 cites W2005149470 @default.
- W4200429502 cites W2020641160 @default.
- W4200429502 cites W2027902860 @default.
- W4200429502 cites W2045427344 @default.
- W4200429502 cites W2045593919 @default.
- W4200429502 cites W2079616103 @default.
- W4200429502 cites W2097959846 @default.
- W4200429502 cites W2125437673 @default.
- W4200429502 cites W2160011548 @default.
- W4200429502 cites W2162210260 @default.
- W4200429502 cites W2166597282 @default.
- W4200429502 cites W2171098181 @default.
- W4200429502 cites W2177066871 @default.
- W4200429502 cites W2193720533 @default.
- W4200429502 cites W2219715551 @default.
- W4200429502 cites W2334686861 @default.
- W4200429502 cites W2343462218 @default.
- W4200429502 cites W2346100606 @default.
- W4200429502 cites W2497122512 @default.
- W4200429502 cites W2529827714 @default.
- W4200429502 cites W2954233016 @default.
- W4200429502 cites W3034856749 @default.
- W4200429502 cites W3044592382 @default.
- W4200429502 cites W3048225388 @default.
- W4200429502 cites W3096847176 @default.
- W4200429502 doi "https://doi.org/10.1016/j.artmed.2021.102214" @default.
- W4200429502 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34998512" @default.
- W4200429502 hasPublicationYear "2022" @default.
- W4200429502 type Work @default.
- W4200429502 citedByCount "9" @default.
- W4200429502 countsByYear W42004295022022 @default.
- W4200429502 countsByYear W42004295022023 @default.
- W4200429502 crossrefType "journal-article" @default.
- W4200429502 hasAuthorship W4200429502A5010241384 @default.
- W4200429502 hasAuthorship W4200429502A5026560643 @default.
- W4200429502 hasConcept C105795698 @default.
- W4200429502 hasConcept C119857082 @default.
- W4200429502 hasConcept C124101348 @default.
- W4200429502 hasConcept C154945302 @default.
- W4200429502 hasConcept C33923547 @default.
- W4200429502 hasConcept C41008148 @default.
- W4200429502 hasConcept C58041806 @default.
- W4200429502 hasConcept C73555534 @default.
- W4200429502 hasConcept C75684735 @default.
- W4200429502 hasConcept C83546350 @default.
- W4200429502 hasConcept C9357733 @default.
- W4200429502 hasConceptScore W4200429502C105795698 @default.
- W4200429502 hasConceptScore W4200429502C119857082 @default.
- W4200429502 hasConceptScore W4200429502C124101348 @default.
- W4200429502 hasConceptScore W4200429502C154945302 @default.
- W4200429502 hasConceptScore W4200429502C33923547 @default.
- W4200429502 hasConceptScore W4200429502C41008148 @default.
- W4200429502 hasConceptScore W4200429502C58041806 @default.
- W4200429502 hasConceptScore W4200429502C73555534 @default.
- W4200429502 hasConceptScore W4200429502C75684735 @default.
- W4200429502 hasConceptScore W4200429502C83546350 @default.
- W4200429502 hasConceptScore W4200429502C9357733 @default.
- W4200429502 hasLocation W42004295021 @default.
- W4200429502 hasLocation W42004295022 @default.
- W4200429502 hasOpenAccess W4200429502 @default.
- W4200429502 hasPrimaryLocation W42004295021 @default.
- W4200429502 hasRelatedWork W1574575415 @default.
- W4200429502 hasRelatedWork W2024529227 @default.
- W4200429502 hasRelatedWork W2081476516 @default.
- W4200429502 hasRelatedWork W2181530120 @default.
- W4200429502 hasRelatedWork W2581984549 @default.
- W4200429502 hasRelatedWork W3028371478 @default.
- W4200429502 hasRelatedWork W3144172081 @default.
- W4200429502 hasRelatedWork W3179858851 @default.
- W4200429502 hasRelatedWork W4211215373 @default.
- W4200429502 hasRelatedWork W3123177881 @default.
- W4200429502 hasVolume "123" @default.
- W4200429502 isParatext "false" @default.
- W4200429502 isRetracted "false" @default.
- W4200429502 workType "article" @default.