Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200431001> ?p ?o ?g. }
- W4200431001 endingPage "105565" @default.
- W4200431001 startingPage "105565" @default.
- W4200431001 abstract "Bovine tuberculosis (bTB) remains one of the most complex, challenging, and costly animal health problems in England. Identifying and promptly removing all infected cattle from affected herds is key to its eradication strategy; the imperfect sensitivity of the diagnostic testing regime remaining a serious obstacle. The main diagnostic test for bTB in cattle in England, the Single Intradermal Comparative Cervical Tuberculin Test (SICCT: also known as the skin test), can produce inconclusive results below the reactor threshold. The immediate isolation of inconclusive reactor (IR) animals followed by a 60-day retest may not prevent lateral spread within the herd (if it is substandard, allowing transmission) or transmission to wildlife. Over half of IR-only herds that went on to have a positive skin test result (a bTB herd 'incident') in 2020, had it triggered by at least one IR not clearing their 60-day retest, instead of by another test within the previous 15 months. Machine learning classification algorithms (classification tree analysis and random forest), applied to England's 2012-2020 IR-only surveillance herd tests, identified at-risk tests for an incident at the IRs' 60-day retest. In this period, 4 739 out of 22 946 (21 %) IR-only surveillance tests disclosing 6 296 out of 42 685 total IRs, had an incident at retest (2 716 IRs became reactors and 3 580 IRs became two-time IRs). Both models showed an AUC above 80 % in the 2012-2019 dataset. Classification tree analysis was preferred due to its easy-to-interpret outputs, 70 % sensitivity, and 93 % specificity in the 20 % of 2019-2020 testing dataset. The paper aimed to identify IR-only surveillance tests at-risk of an incident at the 60-day retest to target them with appropriate measures to mitigate the IRs' risk. Sixteen percent (341 out of 2 177) of IR-only herd tests were identified as high-risk in the 2020 dataset, with 265 (78 %) of these having at least one reactor or IR at retest. Severe-level reinterpretation of the high-risk IR-only disclosing tests identified in this dataset would turn 68 out of the 590 (12 %) IRs into reactors, generating 23 incidents, the majority (19 or 83 %) part of the 265 incidents that would have been declared at the retest. Classification tree analysis used to identify IR-only high-risk tests in herds eligible for severe interpretation would enhance the sensitivity of the test-and-slaughter regime, cornerstone of the bTB eradication programme in England, further mitigating the risk of disease spread posed by IRs." @default.
- W4200431001 created "2021-12-31" @default.
- W4200431001 creator A5002937877 @default.
- W4200431001 creator A5015012010 @default.
- W4200431001 creator A5017864445 @default.
- W4200431001 creator A5024502203 @default.
- W4200431001 creator A5033211172 @default.
- W4200431001 creator A5045013681 @default.
- W4200431001 creator A5060198611 @default.
- W4200431001 date "2022-02-01" @default.
- W4200431001 modified "2023-10-03" @default.
- W4200431001 title "Machine learning classification methods informing the management of inconclusive reactors at bovine tuberculosis surveillance tests in England" @default.
- W4200431001 cites W1520812622 @default.
- W4200431001 cites W1831050183 @default.
- W4200431001 cites W1864140869 @default.
- W4200431001 cites W1968080521 @default.
- W4200431001 cites W1978053173 @default.
- W4200431001 cites W1987317873 @default.
- W4200431001 cites W1992468000 @default.
- W4200431001 cites W2008438772 @default.
- W4200431001 cites W2011283033 @default.
- W4200431001 cites W2015657827 @default.
- W4200431001 cites W2018006165 @default.
- W4200431001 cites W2021390408 @default.
- W4200431001 cites W2028658429 @default.
- W4200431001 cites W2036493275 @default.
- W4200431001 cites W2046673547 @default.
- W4200431001 cites W2055962544 @default.
- W4200431001 cites W2056787537 @default.
- W4200431001 cites W2066296745 @default.
- W4200431001 cites W2070230130 @default.
- W4200431001 cites W2080099163 @default.
- W4200431001 cites W2086572998 @default.
- W4200431001 cites W2106580323 @default.
- W4200431001 cites W2127997108 @default.
- W4200431001 cites W2141902806 @default.
- W4200431001 cites W2147910956 @default.
- W4200431001 cites W2148143831 @default.
- W4200431001 cites W2155261478 @default.
- W4200431001 cites W2186178232 @default.
- W4200431001 cites W2257795092 @default.
- W4200431001 cites W2334028018 @default.
- W4200431001 cites W2418698374 @default.
- W4200431001 cites W2480829649 @default.
- W4200431001 cites W2586821431 @default.
- W4200431001 cites W2588384656 @default.
- W4200431001 cites W2594794296 @default.
- W4200431001 cites W2607507174 @default.
- W4200431001 cites W2790432751 @default.
- W4200431001 cites W2797115825 @default.
- W4200431001 cites W2889935561 @default.
- W4200431001 cites W2899238819 @default.
- W4200431001 cites W2911964244 @default.
- W4200431001 cites W2937806011 @default.
- W4200431001 cites W2945055261 @default.
- W4200431001 cites W2990370993 @default.
- W4200431001 cites W3091623994 @default.
- W4200431001 cites W3121022942 @default.
- W4200431001 cites W4234473727 @default.
- W4200431001 cites W4254918540 @default.
- W4200431001 doi "https://doi.org/10.1016/j.prevetmed.2021.105565" @default.
- W4200431001 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34954421" @default.
- W4200431001 hasPublicationYear "2022" @default.
- W4200431001 type Work @default.
- W4200431001 citedByCount "2" @default.
- W4200431001 countsByYear W42004310012023 @default.
- W4200431001 crossrefType "journal-article" @default.
- W4200431001 hasAuthorship W4200431001A5002937877 @default.
- W4200431001 hasAuthorship W4200431001A5015012010 @default.
- W4200431001 hasAuthorship W4200431001A5017864445 @default.
- W4200431001 hasAuthorship W4200431001A5024502203 @default.
- W4200431001 hasAuthorship W4200431001A5033211172 @default.
- W4200431001 hasAuthorship W4200431001A5045013681 @default.
- W4200431001 hasAuthorship W4200431001A5060198611 @default.
- W4200431001 hasConcept C105795698 @default.
- W4200431001 hasConcept C119857082 @default.
- W4200431001 hasConcept C142724271 @default.
- W4200431001 hasConcept C154945302 @default.
- W4200431001 hasConcept C18903297 @default.
- W4200431001 hasConcept C194775826 @default.
- W4200431001 hasConcept C2776247216 @default.
- W4200431001 hasConcept C2777267654 @default.
- W4200431001 hasConcept C2777975735 @default.
- W4200431001 hasConcept C2778497218 @default.
- W4200431001 hasConcept C2781069245 @default.
- W4200431001 hasConcept C3018264790 @default.
- W4200431001 hasConcept C33923547 @default.
- W4200431001 hasConcept C41008148 @default.
- W4200431001 hasConcept C42475967 @default.
- W4200431001 hasConcept C42972112 @default.
- W4200431001 hasConcept C71924100 @default.
- W4200431001 hasConcept C761482 @default.
- W4200431001 hasConcept C76155785 @default.
- W4200431001 hasConcept C86803240 @default.
- W4200431001 hasConceptScore W4200431001C105795698 @default.
- W4200431001 hasConceptScore W4200431001C119857082 @default.
- W4200431001 hasConceptScore W4200431001C142724271 @default.
- W4200431001 hasConceptScore W4200431001C154945302 @default.