Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200432631> ?p ?o ?g. }
- W4200432631 endingPage "502" @default.
- W4200432631 startingPage "485" @default.
- W4200432631 abstract "Due to the structure of rolling bearings and the complexity of the operating environment, collected vibration signals tend to show strong non-stationary and time-varying characteristics. Extracting useful fault feature information from actual bearing vibration signals and identifying bearing faults is challenging. In this paper, an innovative optimized adaptive deep belief network (SADBN) is proposed to address the problem of rolling bearing fault identification. The DBN is pre-trained by the minimum batch stochastic gradient descent. Then, a back propagation neural network and conjugate gradient descent are used to supervise and fine-tune the entire DBN model, which effectively improve the classification accuracy of the DBN. The salp swarm algorithm, an intelligent optimization method, is used to optimize the DBN. Then, the experience of deep learning network structure is summarized. Finally, a series of simulations based on the experimental data verify the effectiveness of the proposed method." @default.
- W4200432631 created "2021-12-31" @default.
- W4200432631 creator A5005037959 @default.
- W4200432631 creator A5006672179 @default.
- W4200432631 creator A5025378215 @default.
- W4200432631 creator A5046507515 @default.
- W4200432631 date "2022-09-01" @default.
- W4200432631 modified "2023-10-16" @default.
- W4200432631 title "Rolling bearing fault diagnosis based on SSA optimized self-adaptive DBN" @default.
- W4200432631 cites W1972904341 @default.
- W4200432631 cites W1973795114 @default.
- W4200432631 cites W1974543974 @default.
- W4200432631 cites W1980438367 @default.
- W4200432631 cites W1984276989 @default.
- W4200432631 cites W1990866134 @default.
- W4200432631 cites W1992481261 @default.
- W4200432631 cites W2027296658 @default.
- W4200432631 cites W2035069782 @default.
- W4200432631 cites W2036273098 @default.
- W4200432631 cites W2049706005 @default.
- W4200432631 cites W2057199060 @default.
- W4200432631 cites W2076063813 @default.
- W4200432631 cites W2090753062 @default.
- W4200432631 cites W2100495367 @default.
- W4200432631 cites W2107091340 @default.
- W4200432631 cites W2136922672 @default.
- W4200432631 cites W2163922914 @default.
- W4200432631 cites W2165991108 @default.
- W4200432631 cites W2258884143 @default.
- W4200432631 cites W2317595875 @default.
- W4200432631 cites W2593479727 @default.
- W4200432631 cites W2612554669 @default.
- W4200432631 cites W2620681910 @default.
- W4200432631 cites W2738900493 @default.
- W4200432631 cites W2744242411 @default.
- W4200432631 cites W2744604411 @default.
- W4200432631 cites W2905386532 @default.
- W4200432631 cites W2939027458 @default.
- W4200432631 doi "https://doi.org/10.1016/j.isatra.2021.11.024" @default.
- W4200432631 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35177261" @default.
- W4200432631 hasPublicationYear "2022" @default.
- W4200432631 type Work @default.
- W4200432631 citedByCount "41" @default.
- W4200432631 countsByYear W42004326312022 @default.
- W4200432631 countsByYear W42004326312023 @default.
- W4200432631 crossrefType "journal-article" @default.
- W4200432631 hasAuthorship W4200432631A5005037959 @default.
- W4200432631 hasAuthorship W4200432631A5006672179 @default.
- W4200432631 hasAuthorship W4200432631A5025378215 @default.
- W4200432631 hasAuthorship W4200432631A5046507515 @default.
- W4200432631 hasConcept C108583219 @default.
- W4200432631 hasConcept C11413529 @default.
- W4200432631 hasConcept C121332964 @default.
- W4200432631 hasConcept C127313418 @default.
- W4200432631 hasConcept C127413603 @default.
- W4200432631 hasConcept C138885662 @default.
- W4200432631 hasConcept C153180895 @default.
- W4200432631 hasConcept C153258448 @default.
- W4200432631 hasConcept C154945302 @default.
- W4200432631 hasConcept C155032097 @default.
- W4200432631 hasConcept C165205528 @default.
- W4200432631 hasConcept C175551986 @default.
- W4200432631 hasConcept C198394728 @default.
- W4200432631 hasConcept C199978012 @default.
- W4200432631 hasConcept C206688291 @default.
- W4200432631 hasConcept C2776401178 @default.
- W4200432631 hasConcept C41008148 @default.
- W4200432631 hasConcept C41895202 @default.
- W4200432631 hasConcept C50644808 @default.
- W4200432631 hasConcept C62520636 @default.
- W4200432631 hasConcept C81184566 @default.
- W4200432631 hasConcept C97385483 @default.
- W4200432631 hasConceptScore W4200432631C108583219 @default.
- W4200432631 hasConceptScore W4200432631C11413529 @default.
- W4200432631 hasConceptScore W4200432631C121332964 @default.
- W4200432631 hasConceptScore W4200432631C127313418 @default.
- W4200432631 hasConceptScore W4200432631C127413603 @default.
- W4200432631 hasConceptScore W4200432631C138885662 @default.
- W4200432631 hasConceptScore W4200432631C153180895 @default.
- W4200432631 hasConceptScore W4200432631C153258448 @default.
- W4200432631 hasConceptScore W4200432631C154945302 @default.
- W4200432631 hasConceptScore W4200432631C155032097 @default.
- W4200432631 hasConceptScore W4200432631C165205528 @default.
- W4200432631 hasConceptScore W4200432631C175551986 @default.
- W4200432631 hasConceptScore W4200432631C198394728 @default.
- W4200432631 hasConceptScore W4200432631C199978012 @default.
- W4200432631 hasConceptScore W4200432631C206688291 @default.
- W4200432631 hasConceptScore W4200432631C2776401178 @default.
- W4200432631 hasConceptScore W4200432631C41008148 @default.
- W4200432631 hasConceptScore W4200432631C41895202 @default.
- W4200432631 hasConceptScore W4200432631C50644808 @default.
- W4200432631 hasConceptScore W4200432631C62520636 @default.
- W4200432631 hasConceptScore W4200432631C81184566 @default.
- W4200432631 hasConceptScore W4200432631C97385483 @default.
- W4200432631 hasLocation W42004326311 @default.
- W4200432631 hasLocation W42004326312 @default.
- W4200432631 hasOpenAccess W4200432631 @default.
- W4200432631 hasPrimaryLocation W42004326311 @default.