Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200434888> ?p ?o ?g. }
- W4200434888 endingPage "113737" @default.
- W4200434888 startingPage "113737" @default.
- W4200434888 abstract "The damage state assessment of buildings after an earthquake is an essential and urgent task that typically requires significant manpower and time for the resilience of a city-scale society. This study aims to develop machine learning (ML) models for the rapid seismic damage-state assessment of steel moment frames, which was never tried before to the authors’ knowledge. Eight ML models were examined for this purpose, including K-nearest neighbors, naïve Bayes, decision tree, random forest (RF), adaptive boosting (AdaBoost), extreme gradient boosting (XGBoost), light gradient boosting, and category boosting. The combination of 468 steel moment frames from the database in DesignSafe cyberinfrastructure and 240 ground motions yielded a total of 112,320 data points. The steel moment frames have a wide variety of geometric configurations (e.g., number of stories from 1 to 19, number of bays from 1 to 5, bay width from 6.1 to 12.19 m), and applied loads (i.e., three cases of dead load and two cases of live load). Nonlinear time history analyses were conducted using OpenSees to produce a comprehensive dataset for the training and testing of the ML models. A reliable procedure to define the damage states of steel moment frames was suggested based on pushover analysis. Damage states of steel moment frames were categorized following the tag definitions (i.e., green, yellow, and red) in ATC-20. Spectral accelerations at five selected periods (1, 2, 3, 4, and 5 s) for the given ground motions and at the first three natural periods of the steel frames were used as input variables for the ML models. From the results, the RF model is suggested for the prediction of the seismic damage states of steel moment frames. The RF model could accurately predict 98% of the assigned tags in the testing dataset. In contrast, the AdaBoost (88%) and naïve Bayes (90%) models displayed the lowest performance. Among the four boosting methods considered, the XGBoost model (97%) exhibited the highest performance. Furthermore, Shapley additive explanations (SHAP) method was used to inspect the importance of input variables on the prediction. It was found that the spectral accelerations at 1 and 2 s strongly influence the prediction, likely because the first natural periods of the considered steel frames fall in the range of 1–2 s. Finally, to provide convenient access to engineers, a graphical user interface based on the developed RF model was created. This study places a pioneering step for the application of machine learning to the rapid damage assessment of building structures." @default.
- W4200434888 created "2021-12-31" @default.
- W4200434888 creator A5032271758 @default.
- W4200434888 creator A5032740080 @default.
- W4200434888 creator A5065021757 @default.
- W4200434888 creator A5082220016 @default.
- W4200434888 date "2022-02-01" @default.
- W4200434888 modified "2023-10-17" @default.
- W4200434888 title "Rapid seismic damage-state assessment of steel moment frames using machine learning" @default.
- W4200434888 cites W1523624053 @default.
- W4200434888 cites W1534477342 @default.
- W4200434888 cites W1672197616 @default.
- W4200434888 cites W1678356000 @default.
- W4200434888 cites W1860026285 @default.
- W4200434888 cites W1963777170 @default.
- W4200434888 cites W1991054868 @default.
- W4200434888 cites W2052921412 @default.
- W4200434888 cites W2068980086 @default.
- W4200434888 cites W2070089168 @default.
- W4200434888 cites W2090828986 @default.
- W4200434888 cites W2104606409 @default.
- W4200434888 cites W2123005344 @default.
- W4200434888 cites W2141806675 @default.
- W4200434888 cites W2143186775 @default.
- W4200434888 cites W2148143831 @default.
- W4200434888 cites W2158698691 @default.
- W4200434888 cites W2787894218 @default.
- W4200434888 cites W2788697198 @default.
- W4200434888 cites W2906675708 @default.
- W4200434888 cites W2930890426 @default.
- W4200434888 cites W2940384555 @default.
- W4200434888 cites W2964772981 @default.
- W4200434888 cites W2974551902 @default.
- W4200434888 cites W2981416566 @default.
- W4200434888 cites W3006597564 @default.
- W4200434888 cites W3010578594 @default.
- W4200434888 cites W3037485026 @default.
- W4200434888 cites W3080418585 @default.
- W4200434888 cites W3082355209 @default.
- W4200434888 cites W3083267464 @default.
- W4200434888 cites W3094002206 @default.
- W4200434888 cites W3097363423 @default.
- W4200434888 cites W3133841051 @default.
- W4200434888 cites W3134790670 @default.
- W4200434888 cites W3136631225 @default.
- W4200434888 cites W3162654371 @default.
- W4200434888 cites W3165270097 @default.
- W4200434888 cites W4297957988 @default.
- W4200434888 cites W571200655 @default.
- W4200434888 doi "https://doi.org/10.1016/j.engstruct.2021.113737" @default.
- W4200434888 hasPublicationYear "2022" @default.
- W4200434888 type Work @default.
- W4200434888 citedByCount "20" @default.
- W4200434888 countsByYear W42004348882022 @default.
- W4200434888 countsByYear W42004348882023 @default.
- W4200434888 crossrefType "journal-article" @default.
- W4200434888 hasAuthorship W4200434888A5032271758 @default.
- W4200434888 hasAuthorship W4200434888A5032740080 @default.
- W4200434888 hasAuthorship W4200434888A5065021757 @default.
- W4200434888 hasAuthorship W4200434888A5082220016 @default.
- W4200434888 hasConcept C119857082 @default.
- W4200434888 hasConcept C121332964 @default.
- W4200434888 hasConcept C127313418 @default.
- W4200434888 hasConcept C127413603 @default.
- W4200434888 hasConcept C154945302 @default.
- W4200434888 hasConcept C169258074 @default.
- W4200434888 hasConcept C179254644 @default.
- W4200434888 hasConcept C2524010 @default.
- W4200434888 hasConcept C33923547 @default.
- W4200434888 hasConcept C41008148 @default.
- W4200434888 hasConcept C46686674 @default.
- W4200434888 hasConcept C66938386 @default.
- W4200434888 hasConcept C70153297 @default.
- W4200434888 hasConcept C74650414 @default.
- W4200434888 hasConcept C84525736 @default.
- W4200434888 hasConcept C90987359 @default.
- W4200434888 hasConcept C99844830 @default.
- W4200434888 hasConceptScore W4200434888C119857082 @default.
- W4200434888 hasConceptScore W4200434888C121332964 @default.
- W4200434888 hasConceptScore W4200434888C127313418 @default.
- W4200434888 hasConceptScore W4200434888C127413603 @default.
- W4200434888 hasConceptScore W4200434888C154945302 @default.
- W4200434888 hasConceptScore W4200434888C169258074 @default.
- W4200434888 hasConceptScore W4200434888C179254644 @default.
- W4200434888 hasConceptScore W4200434888C2524010 @default.
- W4200434888 hasConceptScore W4200434888C33923547 @default.
- W4200434888 hasConceptScore W4200434888C41008148 @default.
- W4200434888 hasConceptScore W4200434888C46686674 @default.
- W4200434888 hasConceptScore W4200434888C66938386 @default.
- W4200434888 hasConceptScore W4200434888C70153297 @default.
- W4200434888 hasConceptScore W4200434888C74650414 @default.
- W4200434888 hasConceptScore W4200434888C84525736 @default.
- W4200434888 hasConceptScore W4200434888C90987359 @default.
- W4200434888 hasConceptScore W4200434888C99844830 @default.
- W4200434888 hasFunder F4320321348 @default.
- W4200434888 hasFunder F4320322030 @default.
- W4200434888 hasFunder F4320322120 @default.
- W4200434888 hasLocation W42004348881 @default.