Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200435539> ?p ?o ?g. }
- W4200435539 endingPage "109426" @default.
- W4200435539 startingPage "109426" @default.
- W4200435539 abstract "Recently, convolutional neural networks (CNN) are widely applied in motor imagery electroencephalography (MI-EEG) signal classification tasks. However, a simple CNN framework is challenging to satisfy the complex MI-EEG signal decoding.In this study, we propose a multiscale Siamese convolutional neural network with cross-channel fusion (MSCCF-Net) for MI-EEG classification tasks. The proposed network consists of three parts: Siamese cross-channel fusion streams, similarity module and classification module. Each Siamese cross-channel fusion stream contains multiple branches, and each branch is supplemented by cross-channel fusion modules to improve multiscale temporal feature representation capability. The similarity module is adopted to measure the feature similarity between multiple branches. At the same time, the classification module provides a strong constraint to classify the features from all Siamese cross-channel fusion streams. The combination of the similarity module and classification module constitutes a new joint training strategy to further optimize the network performance.The experiment is conducted on the public BCI Competition IV 2a and 2b datasets, and the results show that the proposed network achieves an average accuracy of 87.36% and 87.33%, respectively.The proposed network adopts cross-channel fusion to learn multiscale temporal characteristics and joint training strategy to optimize the training process. Therefore, the performance outperforms other state-of-the-art MI-EEG signal classification methods." @default.
- W4200435539 created "2021-12-31" @default.
- W4200435539 creator A5044203269 @default.
- W4200435539 creator A5045362859 @default.
- W4200435539 creator A5050067556 @default.
- W4200435539 creator A5076534555 @default.
- W4200435539 date "2022-02-01" @default.
- W4200435539 modified "2023-10-12" @default.
- W4200435539 title "A multiscale siamese convolutional neural network with cross-channel fusion for motor imagery decoding" @default.
- W4200435539 cites W1969878365 @default.
- W4200435539 cites W1985261475 @default.
- W4200435539 cites W1985762823 @default.
- W4200435539 cites W1992532007 @default.
- W4200435539 cites W2004959199 @default.
- W4200435539 cites W2092728879 @default.
- W4200435539 cites W2149298154 @default.
- W4200435539 cites W2152171700 @default.
- W4200435539 cites W2155617375 @default.
- W4200435539 cites W2253429366 @default.
- W4200435539 cites W2327724441 @default.
- W4200435539 cites W2505613605 @default.
- W4200435539 cites W2549694781 @default.
- W4200435539 cites W2557301950 @default.
- W4200435539 cites W2741907166 @default.
- W4200435539 cites W2759030247 @default.
- W4200435539 cites W2792724009 @default.
- W4200435539 cites W2800329084 @default.
- W4200435539 cites W2800990595 @default.
- W4200435539 cites W2808098316 @default.
- W4200435539 cites W2896120927 @default.
- W4200435539 cites W2899435621 @default.
- W4200435539 cites W2900786131 @default.
- W4200435539 cites W2909776917 @default.
- W4200435539 cites W2944559085 @default.
- W4200435539 cites W2947974121 @default.
- W4200435539 cites W2951648764 @default.
- W4200435539 cites W2954214015 @default.
- W4200435539 cites W2963131444 @default.
- W4200435539 cites W2963283402 @default.
- W4200435539 cites W2971075653 @default.
- W4200435539 cites W2971518519 @default.
- W4200435539 cites W2999632330 @default.
- W4200435539 cites W3003189155 @default.
- W4200435539 cites W3012521722 @default.
- W4200435539 cites W3020919889 @default.
- W4200435539 cites W3035982802 @default.
- W4200435539 cites W3041449169 @default.
- W4200435539 cites W3044202552 @default.
- W4200435539 cites W3099026523 @default.
- W4200435539 cites W3102455230 @default.
- W4200435539 cites W3113058752 @default.
- W4200435539 cites W3123356826 @default.
- W4200435539 cites W3175829748 @default.
- W4200435539 doi "https://doi.org/10.1016/j.jneumeth.2021.109426" @default.
- W4200435539 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34902364" @default.
- W4200435539 hasPublicationYear "2022" @default.
- W4200435539 type Work @default.
- W4200435539 citedByCount "7" @default.
- W4200435539 countsByYear W42004355392022 @default.
- W4200435539 countsByYear W42004355392023 @default.
- W4200435539 crossrefType "journal-article" @default.
- W4200435539 hasAuthorship W4200435539A5044203269 @default.
- W4200435539 hasAuthorship W4200435539A5045362859 @default.
- W4200435539 hasAuthorship W4200435539A5050067556 @default.
- W4200435539 hasAuthorship W4200435539A5076534555 @default.
- W4200435539 hasConcept C103278499 @default.
- W4200435539 hasConcept C108583219 @default.
- W4200435539 hasConcept C11413529 @default.
- W4200435539 hasConcept C115961682 @default.
- W4200435539 hasConcept C118552586 @default.
- W4200435539 hasConcept C127162648 @default.
- W4200435539 hasConcept C138885662 @default.
- W4200435539 hasConcept C153180895 @default.
- W4200435539 hasConcept C154945302 @default.
- W4200435539 hasConcept C15744967 @default.
- W4200435539 hasConcept C173201364 @default.
- W4200435539 hasConcept C199360897 @default.
- W4200435539 hasConcept C2776401178 @default.
- W4200435539 hasConcept C2779843651 @default.
- W4200435539 hasConcept C31258907 @default.
- W4200435539 hasConcept C41008148 @default.
- W4200435539 hasConcept C41895202 @default.
- W4200435539 hasConcept C522805319 @default.
- W4200435539 hasConcept C52622490 @default.
- W4200435539 hasConcept C54808283 @default.
- W4200435539 hasConcept C57273362 @default.
- W4200435539 hasConcept C81363708 @default.
- W4200435539 hasConceptScore W4200435539C103278499 @default.
- W4200435539 hasConceptScore W4200435539C108583219 @default.
- W4200435539 hasConceptScore W4200435539C11413529 @default.
- W4200435539 hasConceptScore W4200435539C115961682 @default.
- W4200435539 hasConceptScore W4200435539C118552586 @default.
- W4200435539 hasConceptScore W4200435539C127162648 @default.
- W4200435539 hasConceptScore W4200435539C138885662 @default.
- W4200435539 hasConceptScore W4200435539C153180895 @default.
- W4200435539 hasConceptScore W4200435539C154945302 @default.
- W4200435539 hasConceptScore W4200435539C15744967 @default.
- W4200435539 hasConceptScore W4200435539C173201364 @default.