Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200436566> ?p ?o ?g. }
- W4200436566 endingPage "122591" @default.
- W4200436566 startingPage "122591" @default.
- W4200436566 abstract "• A novel model was developed based on bubbling bed gasifier integrated with SOFC. • 30 biomass feedstocks were used as fuel in gasification integrated SOFC cycle. • The developed Aspen Plus model was used to train ANN model. • The ANN proved to be a powerful tool for combined power generation systems. With the growing world population and industrial developments, the supply of energy from an economically feasible and widely available source is important. Biomass gasification is a promising technology that produces lower emissions and allows efficient conversion. The gas obtained from the gasification process, especially in steam gasification, consists of a considerable amount of H 2 and is used in fuel cells, especially solid oxide fuel cells (SOFC), to generate electricity. SOFC can convert the chemical energy into electricity and is considered as the most suitable fuel cell type for biomass gasification derived fuels. There are numerous research studies on integrated gasification-SOFC systems in the literature. However, these systems are still under development and studies are being conducted on the appropriate design parameters and operating conditions to achieve high energy efficiency. Modeling of the integrated gasification and SOFC system using the thermodynamic method is the simplest way to determine the process behavior. Nowadays, artificial neural networks (ANN) are one of the most popular modeling methods to represent the thermodynamic based gasification and SOFC systems. In this study, an integrated bubbling fluidized bed gasifier and SOFC model was created to generate data for training the ANN models with Aspen Plus simulation. The ANN models predicted the performance parameters in terms of electrical efficiency, net voltage and current density successfully using the varying operating conditions and 30 different biomass types as input parameters. The results showed that the developed ANN models estimated the output parameters with high accuracy by means of R 2 greater than 0.999, MAPE < 0.053 and RMSE < 0.751 for training test and validation data sets." @default.
- W4200436566 created "2021-12-31" @default.
- W4200436566 creator A5016920181 @default.
- W4200436566 creator A5044661006 @default.
- W4200436566 creator A5065481059 @default.
- W4200436566 date "2022-03-01" @default.
- W4200436566 modified "2023-10-17" @default.
- W4200436566 title "Artificial Intelligence Approach in Gasification Integrated Solid Oxide Fuel Cell Cycle" @default.
- W4200436566 cites W1531639010 @default.
- W4200436566 cites W1853552531 @default.
- W4200436566 cites W1913806764 @default.
- W4200436566 cites W1963614637 @default.
- W4200436566 cites W1968125918 @default.
- W4200436566 cites W1970383617 @default.
- W4200436566 cites W1974677479 @default.
- W4200436566 cites W1986857314 @default.
- W4200436566 cites W1987180098 @default.
- W4200436566 cites W1988867856 @default.
- W4200436566 cites W2002429273 @default.
- W4200436566 cites W2005479943 @default.
- W4200436566 cites W2006932026 @default.
- W4200436566 cites W2010117577 @default.
- W4200436566 cites W2011765321 @default.
- W4200436566 cites W2016865248 @default.
- W4200436566 cites W2018758007 @default.
- W4200436566 cites W2026825877 @default.
- W4200436566 cites W2032458012 @default.
- W4200436566 cites W2032713869 @default.
- W4200436566 cites W2036978928 @default.
- W4200436566 cites W2039099679 @default.
- W4200436566 cites W2040218041 @default.
- W4200436566 cites W2041016931 @default.
- W4200436566 cites W2044956713 @default.
- W4200436566 cites W2047007942 @default.
- W4200436566 cites W2049114690 @default.
- W4200436566 cites W2054183678 @default.
- W4200436566 cites W2054895044 @default.
- W4200436566 cites W2056496970 @default.
- W4200436566 cites W2059487312 @default.
- W4200436566 cites W2060404677 @default.
- W4200436566 cites W2063889550 @default.
- W4200436566 cites W2063977536 @default.
- W4200436566 cites W2065553510 @default.
- W4200436566 cites W2073756608 @default.
- W4200436566 cites W2075886908 @default.
- W4200436566 cites W2081919840 @default.
- W4200436566 cites W2084690291 @default.
- W4200436566 cites W2088493185 @default.
- W4200436566 cites W2092182188 @default.
- W4200436566 cites W2130100029 @default.
- W4200436566 cites W2142132339 @default.
- W4200436566 cites W2175877885 @default.
- W4200436566 cites W2202274115 @default.
- W4200436566 cites W2401364403 @default.
- W4200436566 cites W2484997644 @default.
- W4200436566 cites W2516078264 @default.
- W4200436566 cites W2563639317 @default.
- W4200436566 cites W2572597211 @default.
- W4200436566 cites W2590712444 @default.
- W4200436566 cites W2616931567 @default.
- W4200436566 cites W2736490054 @default.
- W4200436566 cites W2765233336 @default.
- W4200436566 cites W2772378013 @default.
- W4200436566 cites W2774484316 @default.
- W4200436566 cites W2783214976 @default.
- W4200436566 cites W2789337162 @default.
- W4200436566 cites W2795205797 @default.
- W4200436566 cites W2924984351 @default.
- W4200436566 cites W2943260003 @default.
- W4200436566 cites W2959400106 @default.
- W4200436566 cites W2966668136 @default.
- W4200436566 cites W3023471088 @default.
- W4200436566 cites W3038389937 @default.
- W4200436566 cites W3086284090 @default.
- W4200436566 cites W3089798658 @default.
- W4200436566 cites W3092539119 @default.
- W4200436566 cites W3122504603 @default.
- W4200436566 cites W3133632594 @default.
- W4200436566 cites W3138211026 @default.
- W4200436566 cites W3145390373 @default.
- W4200436566 cites W3150702579 @default.
- W4200436566 cites W3152935633 @default.
- W4200436566 cites W4231884821 @default.
- W4200436566 doi "https://doi.org/10.1016/j.fuel.2021.122591" @default.
- W4200436566 hasPublicationYear "2022" @default.
- W4200436566 type Work @default.
- W4200436566 citedByCount "15" @default.
- W4200436566 countsByYear W42004365662022 @default.
- W4200436566 countsByYear W42004365662023 @default.
- W4200436566 crossrefType "journal-article" @default.
- W4200436566 hasAuthorship W4200436566A5016920181 @default.
- W4200436566 hasAuthorship W4200436566A5044661006 @default.
- W4200436566 hasAuthorship W4200436566A5065481059 @default.
- W4200436566 hasConcept C111368507 @default.
- W4200436566 hasConcept C115033672 @default.
- W4200436566 hasConcept C115540264 @default.
- W4200436566 hasConcept C119599485 @default.
- W4200436566 hasConcept C121332964 @default.