Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200438723> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W4200438723 endingPage "137" @default.
- W4200438723 startingPage "114" @default.
- W4200438723 abstract "This chapter introduces the readers to the in-depth knowledge of regression analysis. Regression is a concept used both in statistics and computer science, specifically in machine learning. However, the concept remains unaltered, but the applications. This chapter will learn about two primarily used regression analysis algorithms, linear regression and logistic regression. Here, each of the algorithms will be described in detail, with hands-on application. We will also learn linear and logistic regression in a more elaborative way while demonstrating through Python program on a real-world dataset." @default.
- W4200438723 created "2021-12-31" @default.
- W4200438723 creator A5032826979 @default.
- W4200438723 date "2021-12-22" @default.
- W4200438723 modified "2023-10-14" @default.
- W4200438723 title "Regression: Prediction" @default.
- W4200438723 doi "https://doi.org/10.2174/9781681089409121010007" @default.
- W4200438723 hasPublicationYear "2021" @default.
- W4200438723 type Work @default.
- W4200438723 citedByCount "0" @default.
- W4200438723 crossrefType "book-chapter" @default.
- W4200438723 hasAuthorship W4200438723A5032826979 @default.
- W4200438723 hasConcept C105795698 @default.
- W4200438723 hasConcept C119857082 @default.
- W4200438723 hasConcept C120068334 @default.
- W4200438723 hasConcept C151956035 @default.
- W4200438723 hasConcept C152877465 @default.
- W4200438723 hasConcept C154945302 @default.
- W4200438723 hasConcept C199360897 @default.
- W4200438723 hasConcept C32224588 @default.
- W4200438723 hasConcept C33923547 @default.
- W4200438723 hasConcept C41008148 @default.
- W4200438723 hasConcept C44882253 @default.
- W4200438723 hasConcept C48921125 @default.
- W4200438723 hasConcept C519991488 @default.
- W4200438723 hasConcept C57381214 @default.
- W4200438723 hasConcept C61722155 @default.
- W4200438723 hasConcept C83546350 @default.
- W4200438723 hasConceptScore W4200438723C105795698 @default.
- W4200438723 hasConceptScore W4200438723C119857082 @default.
- W4200438723 hasConceptScore W4200438723C120068334 @default.
- W4200438723 hasConceptScore W4200438723C151956035 @default.
- W4200438723 hasConceptScore W4200438723C152877465 @default.
- W4200438723 hasConceptScore W4200438723C154945302 @default.
- W4200438723 hasConceptScore W4200438723C199360897 @default.
- W4200438723 hasConceptScore W4200438723C32224588 @default.
- W4200438723 hasConceptScore W4200438723C33923547 @default.
- W4200438723 hasConceptScore W4200438723C41008148 @default.
- W4200438723 hasConceptScore W4200438723C44882253 @default.
- W4200438723 hasConceptScore W4200438723C48921125 @default.
- W4200438723 hasConceptScore W4200438723C519991488 @default.
- W4200438723 hasConceptScore W4200438723C57381214 @default.
- W4200438723 hasConceptScore W4200438723C61722155 @default.
- W4200438723 hasConceptScore W4200438723C83546350 @default.
- W4200438723 hasLocation W42004387231 @default.
- W4200438723 hasOpenAccess W4200438723 @default.
- W4200438723 hasPrimaryLocation W42004387231 @default.
- W4200438723 hasRelatedWork W1546472494 @default.
- W4200438723 hasRelatedWork W1577947823 @default.
- W4200438723 hasRelatedWork W2021320650 @default.
- W4200438723 hasRelatedWork W2199187834 @default.
- W4200438723 hasRelatedWork W2375721435 @default.
- W4200438723 hasRelatedWork W267133670 @default.
- W4200438723 hasRelatedWork W2886532972 @default.
- W4200438723 hasRelatedWork W3118299338 @default.
- W4200438723 hasRelatedWork W3124236979 @default.
- W4200438723 hasRelatedWork W656065272 @default.
- W4200438723 isParatext "false" @default.
- W4200438723 isRetracted "false" @default.
- W4200438723 workType "book-chapter" @default.