Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200442073> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W4200442073 abstract "Nowadays, artificial intelligence (AI) and deep learning becomes the most important research issues. The history of AI technology started from machine learning, convolution neural networks (CNN), recurrent neural network (RNN), long short-term memory (LSTM), then developed to the latest technology of generative adversarial network (GAN). Deep learning is improving quickly. Data augmentation and transfer learning are currently advanced functions in the field of deep learning, which accelerates the whole training of the neural networks and improves model accuracy. This study implements these two functions and analyzes the performance in a deep learning model. Due to our performance study, researchers can make the most efficient AI model. To find a better deep learning model, we evaluate five deep learning strategies. In this way, we compare different learning effects and observe model accuracy. According to analysis charts and data tables, this study shows that transferred deep learning and fine-tune strategy not only increase the accuracy but also give insignificant overfitting. We also prove that fine-tune transfer learning significantly saves more time and costs in future tests and experiments." @default.
- W4200442073 created "2021-12-31" @default.
- W4200442073 creator A5000669780 @default.
- W4200442073 creator A5033926270 @default.
- W4200442073 date "2021-10-29" @default.
- W4200442073 modified "2023-10-18" @default.
- W4200442073 title "Performance Analysis of Fine-tune Transferred Deep Learning" @default.
- W4200442073 cites W2194775991 @default.
- W4200442073 cites W2552765257 @default.
- W4200442073 cites W2887902433 @default.
- W4200442073 cites W2977418027 @default.
- W4200442073 cites W2980490246 @default.
- W4200442073 cites W3013269789 @default.
- W4200442073 cites W3096015486 @default.
- W4200442073 cites W3121654071 @default.
- W4200442073 doi "https://doi.org/10.1109/ecice52819.2021.9645649" @default.
- W4200442073 hasPublicationYear "2021" @default.
- W4200442073 type Work @default.
- W4200442073 citedByCount "3" @default.
- W4200442073 countsByYear W42004420732022 @default.
- W4200442073 countsByYear W42004420732023 @default.
- W4200442073 crossrefType "proceedings-article" @default.
- W4200442073 hasAuthorship W4200442073A5000669780 @default.
- W4200442073 hasAuthorship W4200442073A5033926270 @default.
- W4200442073 hasConcept C108583219 @default.
- W4200442073 hasConcept C119857082 @default.
- W4200442073 hasConcept C147168706 @default.
- W4200442073 hasConcept C150899416 @default.
- W4200442073 hasConcept C154945302 @default.
- W4200442073 hasConcept C202444582 @default.
- W4200442073 hasConcept C22019652 @default.
- W4200442073 hasConcept C33923547 @default.
- W4200442073 hasConcept C41008148 @default.
- W4200442073 hasConcept C50644808 @default.
- W4200442073 hasConcept C81363708 @default.
- W4200442073 hasConcept C9652623 @default.
- W4200442073 hasConceptScore W4200442073C108583219 @default.
- W4200442073 hasConceptScore W4200442073C119857082 @default.
- W4200442073 hasConceptScore W4200442073C147168706 @default.
- W4200442073 hasConceptScore W4200442073C150899416 @default.
- W4200442073 hasConceptScore W4200442073C154945302 @default.
- W4200442073 hasConceptScore W4200442073C202444582 @default.
- W4200442073 hasConceptScore W4200442073C22019652 @default.
- W4200442073 hasConceptScore W4200442073C33923547 @default.
- W4200442073 hasConceptScore W4200442073C41008148 @default.
- W4200442073 hasConceptScore W4200442073C50644808 @default.
- W4200442073 hasConceptScore W4200442073C81363708 @default.
- W4200442073 hasConceptScore W4200442073C9652623 @default.
- W4200442073 hasLocation W42004420731 @default.
- W4200442073 hasOpenAccess W4200442073 @default.
- W4200442073 hasPrimaryLocation W42004420731 @default.
- W4200442073 hasRelatedWork W2963958939 @default.
- W4200442073 hasRelatedWork W2997709384 @default.
- W4200442073 hasRelatedWork W3021430260 @default.
- W4200442073 hasRelatedWork W3099765033 @default.
- W4200442073 hasRelatedWork W3173182854 @default.
- W4200442073 hasRelatedWork W3186919929 @default.
- W4200442073 hasRelatedWork W4200442073 @default.
- W4200442073 hasRelatedWork W4220996320 @default.
- W4200442073 hasRelatedWork W4308353688 @default.
- W4200442073 hasRelatedWork W4313289428 @default.
- W4200442073 isParatext "false" @default.
- W4200442073 isRetracted "false" @default.
- W4200442073 workType "article" @default.