Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200450421> ?p ?o ?g. }
- W4200450421 abstract "Individual-based models have become important tools in the global battle against infectious diseases, yet model complexity can make calibration to biological and epidemiological data challenging. We propose using a Bayesian optimization framework employing Gaussian process or machine learning emulator functions to calibrate a complex malaria transmission simulator. We demonstrate our approach by optimizing over a high-dimensional parameter space with respect to a portfolio of multiple fitting objectives built from datasets capturing the natural history of malaria transmission and disease progression. Our approach quickly outperforms previous calibrations, yielding an improved final goodness of fit. Per-objective parameter importance and sensitivity diagnostics provided by our approach offer epidemiological insights and enhance trust in predictions through greater interpretability." @default.
- W4200450421 created "2021-12-31" @default.
- W4200450421 creator A5009767898 @default.
- W4200450421 creator A5018561836 @default.
- W4200450421 creator A5035413731 @default.
- W4200450421 creator A5042562281 @default.
- W4200450421 creator A5063132320 @default.
- W4200450421 creator A5072187141 @default.
- W4200450421 creator A5076225010 @default.
- W4200450421 creator A5087492716 @default.
- W4200450421 date "2021-12-10" @default.
- W4200450421 modified "2023-10-17" @default.
- W4200450421 title "Emulator-based Bayesian optimization for efficient multi-objective calibration of an individual-based model of malaria" @default.
- W4200450421 cites W1756832347 @default.
- W4200450421 cites W1973333099 @default.
- W4200450421 cites W1992126082 @default.
- W4200450421 cites W1994633406 @default.
- W4200450421 cites W2006037565 @default.
- W4200450421 cites W2016904445 @default.
- W4200450421 cites W2026708814 @default.
- W4200450421 cites W2033735276 @default.
- W4200450421 cites W2051821221 @default.
- W4200450421 cites W2058775476 @default.
- W4200450421 cites W2066245205 @default.
- W4200450421 cites W2071721660 @default.
- W4200450421 cites W2076212031 @default.
- W4200450421 cites W2077281606 @default.
- W4200450421 cites W2077801381 @default.
- W4200450421 cites W2088765131 @default.
- W4200450421 cites W2101087371 @default.
- W4200450421 cites W2107324390 @default.
- W4200450421 cites W2113025968 @default.
- W4200450421 cites W2127419661 @default.
- W4200450421 cites W2136547339 @default.
- W4200450421 cites W2152184697 @default.
- W4200450421 cites W2156928650 @default.
- W4200450421 cites W2158417058 @default.
- W4200450421 cites W2165528241 @default.
- W4200450421 cites W2186365207 @default.
- W4200450421 cites W2484365019 @default.
- W4200450421 cites W2553755808 @default.
- W4200450421 cites W2567030649 @default.
- W4200450421 cites W2580012649 @default.
- W4200450421 cites W2610331396 @default.
- W4200450421 cites W2617508148 @default.
- W4200450421 cites W2751317214 @default.
- W4200450421 cites W2789111786 @default.
- W4200450421 cites W2810532979 @default.
- W4200450421 cites W28412257 @default.
- W4200450421 cites W2911546748 @default.
- W4200450421 cites W2911964244 @default.
- W4200450421 cites W2925267709 @default.
- W4200450421 cites W2964819422 @default.
- W4200450421 cites W2966378229 @default.
- W4200450421 cites W3006982954 @default.
- W4200450421 cites W3023721945 @default.
- W4200450421 cites W3087999580 @default.
- W4200450421 cites W3127324906 @default.
- W4200450421 cites W4233056867 @default.
- W4200450421 cites W4240294902 @default.
- W4200450421 doi "https://doi.org/10.1038/s41467-021-27486-z" @default.
- W4200450421 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34893600" @default.
- W4200450421 hasPublicationYear "2021" @default.
- W4200450421 type Work @default.
- W4200450421 citedByCount "15" @default.
- W4200450421 countsByYear W42004504212022 @default.
- W4200450421 countsByYear W42004504212023 @default.
- W4200450421 crossrefType "journal-article" @default.
- W4200450421 hasAuthorship W4200450421A5009767898 @default.
- W4200450421 hasAuthorship W4200450421A5018561836 @default.
- W4200450421 hasAuthorship W4200450421A5035413731 @default.
- W4200450421 hasAuthorship W4200450421A5042562281 @default.
- W4200450421 hasAuthorship W4200450421A5063132320 @default.
- W4200450421 hasAuthorship W4200450421A5072187141 @default.
- W4200450421 hasAuthorship W4200450421A5076225010 @default.
- W4200450421 hasAuthorship W4200450421A5087492716 @default.
- W4200450421 hasBestOaLocation W42004504211 @default.
- W4200450421 hasConcept C105795698 @default.
- W4200450421 hasConcept C107673813 @default.
- W4200450421 hasConcept C119857082 @default.
- W4200450421 hasConcept C121332964 @default.
- W4200450421 hasConcept C124101348 @default.
- W4200450421 hasConcept C154945302 @default.
- W4200450421 hasConcept C163716315 @default.
- W4200450421 hasConcept C165838908 @default.
- W4200450421 hasConcept C203014093 @default.
- W4200450421 hasConcept C2778048844 @default.
- W4200450421 hasConcept C2778049539 @default.
- W4200450421 hasConcept C2781067378 @default.
- W4200450421 hasConcept C33923547 @default.
- W4200450421 hasConcept C41008148 @default.
- W4200450421 hasConcept C61326573 @default.
- W4200450421 hasConcept C62520636 @default.
- W4200450421 hasConcept C71924100 @default.
- W4200450421 hasConcept C761482 @default.
- W4200450421 hasConcept C76155785 @default.
- W4200450421 hasConcept C81692654 @default.
- W4200450421 hasConceptScore W4200450421C105795698 @default.
- W4200450421 hasConceptScore W4200450421C107673813 @default.
- W4200450421 hasConceptScore W4200450421C119857082 @default.