Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200451325> ?p ?o ?g. }
- W4200451325 endingPage "2592" @default.
- W4200451325 startingPage "2592" @default.
- W4200451325 abstract "Malting barley requires sensitive methods for N status estimation during the vegetation period, as inadequate N nutrition can significantly limit yield formation, while overfertilization often leads to an increase in grain protein content above the limit for malting barley and also to excessive lodging. We hypothesized that the use of N nutrition index and N uptake combined with red-edge or green reflectance would provide extended linearity and higher accuracy in estimating N status across different years, genotypes, and densities, and the accuracy of N status estimation will be further improved by using artificial neural network based on multiple spectral reflectance wavelengths. Multifactorial field experiments on interactive effects of N nutrition, sowing density, and genotype were conducted in 2011–2013 to develop methods for estimation of N status and to reduce dependency on changing environmental conditions, genotype, or barley management. N nutrition index (NNI) and total N uptake were used to correct the effect of biomass accumulation and N dilution during plant development. We employed an artificial neural network to integrate data from multiple reflectance wavelengths and thereby eliminate the effects of such interfering factors as genotype, sowing density, and year. NNI and N uptake significantly reduced the interannual variation in relationships to vegetation indices documented for N content. The vegetation indices showing the best performance across years were mainly based on red-edge and carotenoid absorption bands. The use of an artificial neural network also significantly improved the estimation of all N status indicators, including N content. The critical reflectance wavelengths for neural network training were in spectral bands 400–490, 530–570, and 710–720 nm. In summary, combining NNI or N uptake and neural network increased the accuracy of N status estimation to up 94%, compared to less than 60% for N concentration." @default.
- W4200451325 created "2021-12-31" @default.
- W4200451325 creator A5021693776 @default.
- W4200451325 creator A5024667521 @default.
- W4200451325 creator A5028744293 @default.
- W4200451325 creator A5033945952 @default.
- W4200451325 creator A5035028797 @default.
- W4200451325 creator A5040786692 @default.
- W4200451325 creator A5050837715 @default.
- W4200451325 creator A5074771502 @default.
- W4200451325 creator A5077453237 @default.
- W4200451325 creator A5083237953 @default.
- W4200451325 creator A5089681679 @default.
- W4200451325 date "2021-12-20" @default.
- W4200451325 modified "2023-10-17" @default.
- W4200451325 title "Improving Nitrogen Status Estimation in Malting Barley Based on Hyperspectral Reflectance and Artificial Neural Networks" @default.
- W4200451325 cites W1906130215 @default.
- W4200451325 cites W1964503221 @default.
- W4200451325 cites W1971798222 @default.
- W4200451325 cites W1980237824 @default.
- W4200451325 cites W1980865859 @default.
- W4200451325 cites W1982378832 @default.
- W4200451325 cites W1986541078 @default.
- W4200451325 cites W1988233512 @default.
- W4200451325 cites W1990674110 @default.
- W4200451325 cites W1994180767 @default.
- W4200451325 cites W2000012769 @default.
- W4200451325 cites W2009542758 @default.
- W4200451325 cites W2010634199 @default.
- W4200451325 cites W2018170267 @default.
- W4200451325 cites W2019967662 @default.
- W4200451325 cites W2025018930 @default.
- W4200451325 cites W2034085189 @default.
- W4200451325 cites W2035945221 @default.
- W4200451325 cites W2043040083 @default.
- W4200451325 cites W2046338801 @default.
- W4200451325 cites W2062567499 @default.
- W4200451325 cites W2070539138 @default.
- W4200451325 cites W2071915122 @default.
- W4200451325 cites W2072633546 @default.
- W4200451325 cites W2079454091 @default.
- W4200451325 cites W2086453400 @default.
- W4200451325 cites W2088484218 @default.
- W4200451325 cites W2089464686 @default.
- W4200451325 cites W2101174487 @default.
- W4200451325 cites W2101525665 @default.
- W4200451325 cites W2102630498 @default.
- W4200451325 cites W2105587095 @default.
- W4200451325 cites W2112674101 @default.
- W4200451325 cites W2118703810 @default.
- W4200451325 cites W2119198082 @default.
- W4200451325 cites W2122129222 @default.
- W4200451325 cites W2131126673 @default.
- W4200451325 cites W2144023308 @default.
- W4200451325 cites W2144559754 @default.
- W4200451325 cites W2161131008 @default.
- W4200451325 cites W2202966744 @default.
- W4200451325 cites W2482896198 @default.
- W4200451325 cites W2754531448 @default.
- W4200451325 doi "https://doi.org/10.3390/agronomy11122592" @default.
- W4200451325 hasPublicationYear "2021" @default.
- W4200451325 type Work @default.
- W4200451325 citedByCount "4" @default.
- W4200451325 countsByYear W42004513252022 @default.
- W4200451325 countsByYear W42004513252023 @default.
- W4200451325 crossrefType "journal-article" @default.
- W4200451325 hasAuthorship W4200451325A5021693776 @default.
- W4200451325 hasAuthorship W4200451325A5024667521 @default.
- W4200451325 hasAuthorship W4200451325A5028744293 @default.
- W4200451325 hasAuthorship W4200451325A5033945952 @default.
- W4200451325 hasAuthorship W4200451325A5035028797 @default.
- W4200451325 hasAuthorship W4200451325A5040786692 @default.
- W4200451325 hasAuthorship W4200451325A5050837715 @default.
- W4200451325 hasAuthorship W4200451325A5074771502 @default.
- W4200451325 hasAuthorship W4200451325A5077453237 @default.
- W4200451325 hasAuthorship W4200451325A5083237953 @default.
- W4200451325 hasAuthorship W4200451325A5089681679 @default.
- W4200451325 hasBestOaLocation W42004513251 @default.
- W4200451325 hasConcept C108597893 @default.
- W4200451325 hasConcept C115540264 @default.
- W4200451325 hasConcept C120665830 @default.
- W4200451325 hasConcept C121332964 @default.
- W4200451325 hasConcept C142724271 @default.
- W4200451325 hasConcept C154945302 @default.
- W4200451325 hasConcept C159078339 @default.
- W4200451325 hasConcept C168741863 @default.
- W4200451325 hasConcept C205649164 @default.
- W4200451325 hasConcept C2776133958 @default.
- W4200451325 hasConcept C2776388979 @default.
- W4200451325 hasConcept C33923547 @default.
- W4200451325 hasConcept C39432304 @default.
- W4200451325 hasConcept C41008148 @default.
- W4200451325 hasConcept C50644808 @default.
- W4200451325 hasConcept C62649853 @default.
- W4200451325 hasConcept C6557445 @default.
- W4200451325 hasConcept C71924100 @default.
- W4200451325 hasConcept C86803240 @default.
- W4200451325 hasConceptScore W4200451325C108597893 @default.