Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200455110> ?p ?o ?g. }
- W4200455110 endingPage "6412" @default.
- W4200455110 startingPage "6401" @default.
- W4200455110 abstract "With the increase in penetration of renewable energy sources (RES), traditional inertia estimation techniques based purely on the number of online synchronous generators are increasingly unsuitable, ultimately leading towards suboptimal frequency control in the electric power grid. The stochastic nature of RES additionally makes the system inertia a time-varying quantity. Furthermore, the frequency and inertial response of power systems change drastically in multiarea power systems with interconnected tie-lines. Hence, it is important for state/parameter estimation (e.g., inertia) in multiarea systems, while ensuring communication between each of the areas. In this article, a client–server-based federated learning framework is used to estimate power system inertia in a multiarea system. Federated learning is a machine learning technique where multiple decentralized devices are trained with local data, and a global model is updated and redistributed by a central server by aggregating the trained weights of the decentralized devices, without exchanging the local data. Using local frequency measurements, obtained from the phase-locked loop of an energy storage system, the inertia at each of the areas can be estimated locally via offline training using convolutional neural networks (CNNs), whereas the CNN weights update in an online fashion. The framework, tested on a two-area power system, accurately estimated the inertia constant for both independent and identically distributed (IID) and non-IID data. Furthermore, the CNN-based method outperformed conventional neural network-based estimation techniques in terms of number of communication rounds and estimation accuracy." @default.
- W4200455110 created "2021-12-31" @default.
- W4200455110 creator A5020027425 @default.
- W4200455110 creator A5040555753 @default.
- W4200455110 creator A5044965116 @default.
- W4200455110 creator A5070235175 @default.
- W4200455110 creator A5077510367 @default.
- W4200455110 creator A5084772796 @default.
- W4200455110 date "2022-12-01" @default.
- W4200455110 modified "2023-10-18" @default.
- W4200455110 title "Multiarea Inertia Estimation Using Convolutional Neural Networks and Federated Learning" @default.
- W4200455110 cites W2074126784 @default.
- W4200455110 cites W2199118834 @default.
- W4200455110 cites W2552008872 @default.
- W4200455110 cites W2609022147 @default.
- W4200455110 cites W2639428679 @default.
- W4200455110 cites W2785405983 @default.
- W4200455110 cites W2789876780 @default.
- W4200455110 cites W2796966799 @default.
- W4200455110 cites W2806695679 @default.
- W4200455110 cites W2889078883 @default.
- W4200455110 cites W2919358988 @default.
- W4200455110 cites W2930375745 @default.
- W4200455110 cites W2942531434 @default.
- W4200455110 cites W2965674520 @default.
- W4200455110 cites W2989289980 @default.
- W4200455110 cites W2989652541 @default.
- W4200455110 cites W2991352376 @default.
- W4200455110 cites W2995690232 @default.
- W4200455110 cites W2996559828 @default.
- W4200455110 cites W3007607795 @default.
- W4200455110 cites W3009880228 @default.
- W4200455110 cites W3013801864 @default.
- W4200455110 cites W3032458511 @default.
- W4200455110 cites W3037166397 @default.
- W4200455110 cites W3046653923 @default.
- W4200455110 cites W3083240677 @default.
- W4200455110 cites W3090425140 @default.
- W4200455110 cites W3096577976 @default.
- W4200455110 cites W3103802018 @default.
- W4200455110 cites W3110444101 @default.
- W4200455110 cites W3113346630 @default.
- W4200455110 cites W3115481538 @default.
- W4200455110 cites W3120854391 @default.
- W4200455110 cites W3152571609 @default.
- W4200455110 cites W3175656090 @default.
- W4200455110 cites W3176971593 @default.
- W4200455110 cites W3193720581 @default.
- W4200455110 cites W4242916712 @default.
- W4200455110 cites W4376595714 @default.
- W4200455110 doi "https://doi.org/10.1109/jsyst.2021.3134599" @default.
- W4200455110 hasPublicationYear "2022" @default.
- W4200455110 type Work @default.
- W4200455110 citedByCount "7" @default.
- W4200455110 countsByYear W42004551102022 @default.
- W4200455110 countsByYear W42004551102023 @default.
- W4200455110 crossrefType "journal-article" @default.
- W4200455110 hasAuthorship W4200455110A5020027425 @default.
- W4200455110 hasAuthorship W4200455110A5040555753 @default.
- W4200455110 hasAuthorship W4200455110A5044965116 @default.
- W4200455110 hasAuthorship W4200455110A5070235175 @default.
- W4200455110 hasAuthorship W4200455110A5077510367 @default.
- W4200455110 hasAuthorship W4200455110A5084772796 @default.
- W4200455110 hasBestOaLocation W42004551101 @default.
- W4200455110 hasConcept C110407247 @default.
- W4200455110 hasConcept C121332964 @default.
- W4200455110 hasConcept C127413603 @default.
- W4200455110 hasConcept C133731056 @default.
- W4200455110 hasConcept C151233233 @default.
- W4200455110 hasConcept C154945302 @default.
- W4200455110 hasConcept C163258240 @default.
- W4200455110 hasConcept C176605952 @default.
- W4200455110 hasConcept C2775924081 @default.
- W4200455110 hasConcept C41008148 @default.
- W4200455110 hasConcept C47446073 @default.
- W4200455110 hasConcept C50644808 @default.
- W4200455110 hasConcept C62520636 @default.
- W4200455110 hasConcept C74650414 @default.
- W4200455110 hasConcept C81363708 @default.
- W4200455110 hasConcept C89227174 @default.
- W4200455110 hasConceptScore W4200455110C110407247 @default.
- W4200455110 hasConceptScore W4200455110C121332964 @default.
- W4200455110 hasConceptScore W4200455110C127413603 @default.
- W4200455110 hasConceptScore W4200455110C133731056 @default.
- W4200455110 hasConceptScore W4200455110C151233233 @default.
- W4200455110 hasConceptScore W4200455110C154945302 @default.
- W4200455110 hasConceptScore W4200455110C163258240 @default.
- W4200455110 hasConceptScore W4200455110C176605952 @default.
- W4200455110 hasConceptScore W4200455110C2775924081 @default.
- W4200455110 hasConceptScore W4200455110C41008148 @default.
- W4200455110 hasConceptScore W4200455110C47446073 @default.
- W4200455110 hasConceptScore W4200455110C50644808 @default.
- W4200455110 hasConceptScore W4200455110C62520636 @default.
- W4200455110 hasConceptScore W4200455110C74650414 @default.
- W4200455110 hasConceptScore W4200455110C81363708 @default.
- W4200455110 hasConceptScore W4200455110C89227174 @default.
- W4200455110 hasFunder F4320306084 @default.
- W4200455110 hasFunder F4320310344 @default.