Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200458052> ?p ?o ?g. }
- W4200458052 endingPage "110067" @default.
- W4200458052 startingPage "110067" @default.
- W4200458052 abstract "Prediction of porosity from the seismic data via geophysical methods when limited number of wells are available is a challenging task that has high uncertainties. This study aims to construct a hybrid data-driven predictive model to establish a quantitative correlation between seismic pre-stack (SPS) data and the porosity. First, three intelligent models that are optimized by bat-inspired algorithm (BA): optimized neural network (ONN), optimized fuzzy inference system (OFIS), and optimized support vector regression (OSVR) are constructed for relating porosity to the SPS data. Then, to benefit from all individual optimized models, a final hybrid model was built via committee machine (CM) where single models are combined with a proper weight to predict porosity in the reservoir space. This approach is examined on the SPS data from an oil field in the Persian Gulf with a single exploratory well where input parameters (Vp, Vs, and ρ) to the AI models are derived from a two-parameter inversion method. We found that the coefficient of determination, root mean square error, average absolute relative error, and symmetric mean absolute percentage error for the CM are 0.923615, 0.015793, 0.132280, and 0.061310, respectively. Moreover, based on four statistical indexes that are calculated for each model, CM outperformed its individual elements followed by the OSRV. A comprehensive analysis of the results confirms that CM with the OM elements is a superior approach for computing porosity from the SPS in the well and then throughout the entire reservoir volume. This strategy can aid petroleum engineers to have a better forecast of porosity population in the reservoir static model immediately following the data that is obtained from the first exploratory well. Ultimately, successful implementation of this approach will promptly delineate sweet spots that can replace uncertain and complicated conventional geophysical methods." @default.
- W4200458052 created "2021-12-31" @default.
- W4200458052 creator A5004752337 @default.
- W4200458052 creator A5016579165 @default.
- W4200458052 creator A5018015285 @default.
- W4200458052 creator A5036112816 @default.
- W4200458052 creator A5050719824 @default.
- W4200458052 creator A5059010944 @default.
- W4200458052 creator A5059795029 @default.
- W4200458052 creator A5072975223 @default.
- W4200458052 date "2022-03-01" @default.
- W4200458052 modified "2023-10-18" @default.
- W4200458052 title "Porosity prediction from pre-stack seismic data via committee machine with optimized parameters" @default.
- W4200458052 cites W1654520109 @default.
- W4200458052 cites W1974977426 @default.
- W4200458052 cites W1976173697 @default.
- W4200458052 cites W1983381046 @default.
- W4200458052 cites W1988494513 @default.
- W4200458052 cites W1997299870 @default.
- W4200458052 cites W1997357068 @default.
- W4200458052 cites W1999004211 @default.
- W4200458052 cites W2003913953 @default.
- W4200458052 cites W2008855201 @default.
- W4200458052 cites W2019207321 @default.
- W4200458052 cites W2027070582 @default.
- W4200458052 cites W2030619630 @default.
- W4200458052 cites W2038929774 @default.
- W4200458052 cites W2042816221 @default.
- W4200458052 cites W2063512808 @default.
- W4200458052 cites W2104992059 @default.
- W4200458052 cites W2122139894 @default.
- W4200458052 cites W2125695464 @default.
- W4200458052 cites W2155887555 @default.
- W4200458052 cites W2160319921 @default.
- W4200458052 cites W2169615413 @default.
- W4200458052 cites W2171680516 @default.
- W4200458052 cites W2260591590 @default.
- W4200458052 cites W2264191143 @default.
- W4200458052 cites W2395369153 @default.
- W4200458052 cites W2471840424 @default.
- W4200458052 cites W2490619389 @default.
- W4200458052 cites W2592140522 @default.
- W4200458052 cites W2749546756 @default.
- W4200458052 cites W2801688348 @default.
- W4200458052 cites W2804755586 @default.
- W4200458052 cites W2806072166 @default.
- W4200458052 cites W2887200614 @default.
- W4200458052 cites W2899134575 @default.
- W4200458052 cites W2901229910 @default.
- W4200458052 cites W2935698198 @default.
- W4200458052 cites W2995858244 @default.
- W4200458052 cites W2999082041 @default.
- W4200458052 cites W3011190676 @default.
- W4200458052 cites W3032991056 @default.
- W4200458052 cites W3039434452 @default.
- W4200458052 cites W3080202763 @default.
- W4200458052 cites W3084211254 @default.
- W4200458052 cites W3106860847 @default.
- W4200458052 cites W3126177434 @default.
- W4200458052 cites W3197231937 @default.
- W4200458052 cites W3198955447 @default.
- W4200458052 cites W387951558 @default.
- W4200458052 cites W4211007335 @default.
- W4200458052 doi "https://doi.org/10.1016/j.petrol.2021.110067" @default.
- W4200458052 hasPublicationYear "2022" @default.
- W4200458052 type Work @default.
- W4200458052 citedByCount "9" @default.
- W4200458052 countsByYear W42004580522022 @default.
- W4200458052 countsByYear W42004580522023 @default.
- W4200458052 crossrefType "journal-article" @default.
- W4200458052 hasAuthorship W4200458052A5004752337 @default.
- W4200458052 hasAuthorship W4200458052A5016579165 @default.
- W4200458052 hasAuthorship W4200458052A5018015285 @default.
- W4200458052 hasAuthorship W4200458052A5036112816 @default.
- W4200458052 hasAuthorship W4200458052A5050719824 @default.
- W4200458052 hasAuthorship W4200458052A5059010944 @default.
- W4200458052 hasAuthorship W4200458052A5059795029 @default.
- W4200458052 hasAuthorship W4200458052A5072975223 @default.
- W4200458052 hasConcept C105795698 @default.
- W4200458052 hasConcept C11413529 @default.
- W4200458052 hasConcept C119857082 @default.
- W4200458052 hasConcept C122383733 @default.
- W4200458052 hasConcept C12267149 @default.
- W4200458052 hasConcept C124101348 @default.
- W4200458052 hasConcept C127313418 @default.
- W4200458052 hasConcept C128990827 @default.
- W4200458052 hasConcept C139945424 @default.
- W4200458052 hasConcept C187320778 @default.
- W4200458052 hasConcept C2776364302 @default.
- W4200458052 hasConcept C2780092901 @default.
- W4200458052 hasConcept C33923547 @default.
- W4200458052 hasConcept C35817400 @default.
- W4200458052 hasConcept C41008148 @default.
- W4200458052 hasConcept C50644808 @default.
- W4200458052 hasConcept C6648577 @default.
- W4200458052 hasConcept C78762247 @default.
- W4200458052 hasConceptScore W4200458052C105795698 @default.
- W4200458052 hasConceptScore W4200458052C11413529 @default.