Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200459870> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4200459870 endingPage "17" @default.
- W4200459870 startingPage "1" @default.
- W4200459870 abstract "EEG analysis aims to help scientists better understand the brain, help physicians diagnose and treatment choices of the brain-computer interface. Artificial neural networks are among the most effective learning algorithms to perform computing tasks similar to biological neurons in the human brain. In some problems, the neural network model's performance might significantly degrade and overfit due to some irrelevant features that negatively influence the model performance. Swarm optimization algorithms are robust techniques that can be implemented to find optimal solutions to such problems. In this paper, Grey Wolf Optimizer (GWO) and Particle Swarm Optimization (PSO) algorithms are applied for the feature selection and the training of a Feed-forward Neural Network (FFNN). The performance of the FFNN in terms of test accuracy, precision, recall, and F1_score is investigated. Furthermore, this research has implemented other five machine learning algorithms for the purpose of comparison. Experimental results prove that the neural network model outperforms all other algorithms via GWO." @default.
- W4200459870 created "2021-12-31" @default.
- W4200459870 creator A5061671442 @default.
- W4200459870 creator A5062260630 @default.
- W4200459870 date "2022-04-05" @default.
- W4200459870 modified "2023-09-30" @default.
- W4200459870 title "High Performance Implementation of Neural Networks Learning Using Swarm Optimization Algorithms for EEG Classification Based on Brain Wave Data" @default.
- W4200459870 cites W1498436455 @default.
- W4200459870 cites W1973329722 @default.
- W4200459870 cites W2002302337 @default.
- W4200459870 cites W2040870580 @default.
- W4200459870 cites W2047094503 @default.
- W4200459870 cites W2061438946 @default.
- W4200459870 cites W2080201073 @default.
- W4200459870 cites W2099509424 @default.
- W4200459870 cites W2104063964 @default.
- W4200459870 cites W2112796928 @default.
- W4200459870 cites W2124215536 @default.
- W4200459870 cites W2152195021 @default.
- W4200459870 cites W2397558075 @default.
- W4200459870 cites W2794345050 @default.
- W4200459870 cites W2904345049 @default.
- W4200459870 cites W2904364100 @default.
- W4200459870 cites W2908060889 @default.
- W4200459870 cites W2910814270 @default.
- W4200459870 cites W2924610876 @default.
- W4200459870 cites W2953911493 @default.
- W4200459870 cites W2968058863 @default.
- W4200459870 cites W2996404795 @default.
- W4200459870 cites W3113180780 @default.
- W4200459870 cites W3169509541 @default.
- W4200459870 cites W571805963 @default.
- W4200459870 doi "https://doi.org/10.4018/ijamc.292500" @default.
- W4200459870 hasPublicationYear "2022" @default.
- W4200459870 type Work @default.
- W4200459870 citedByCount "5" @default.
- W4200459870 countsByYear W42004598702022 @default.
- W4200459870 crossrefType "journal-article" @default.
- W4200459870 hasAuthorship W4200459870A5061671442 @default.
- W4200459870 hasAuthorship W4200459870A5062260630 @default.
- W4200459870 hasBestOaLocation W42004598701 @default.
- W4200459870 hasConcept C11413529 @default.
- W4200459870 hasConcept C119857082 @default.
- W4200459870 hasConcept C138885662 @default.
- W4200459870 hasConcept C148483581 @default.
- W4200459870 hasConcept C154945302 @default.
- W4200459870 hasConcept C22019652 @default.
- W4200459870 hasConcept C2776401178 @default.
- W4200459870 hasConcept C41008148 @default.
- W4200459870 hasConcept C41895202 @default.
- W4200459870 hasConcept C47702885 @default.
- W4200459870 hasConcept C50644808 @default.
- W4200459870 hasConcept C85617194 @default.
- W4200459870 hasConceptScore W4200459870C11413529 @default.
- W4200459870 hasConceptScore W4200459870C119857082 @default.
- W4200459870 hasConceptScore W4200459870C138885662 @default.
- W4200459870 hasConceptScore W4200459870C148483581 @default.
- W4200459870 hasConceptScore W4200459870C154945302 @default.
- W4200459870 hasConceptScore W4200459870C22019652 @default.
- W4200459870 hasConceptScore W4200459870C2776401178 @default.
- W4200459870 hasConceptScore W4200459870C41008148 @default.
- W4200459870 hasConceptScore W4200459870C41895202 @default.
- W4200459870 hasConceptScore W4200459870C47702885 @default.
- W4200459870 hasConceptScore W4200459870C50644808 @default.
- W4200459870 hasConceptScore W4200459870C85617194 @default.
- W4200459870 hasIssue "1" @default.
- W4200459870 hasLocation W42004598701 @default.
- W4200459870 hasOpenAccess W4200459870 @default.
- W4200459870 hasPrimaryLocation W42004598701 @default.
- W4200459870 hasRelatedWork W1996541855 @default.
- W4200459870 hasRelatedWork W2409149208 @default.
- W4200459870 hasRelatedWork W2940336242 @default.
- W4200459870 hasRelatedWork W2989932438 @default.
- W4200459870 hasRelatedWork W3099765033 @default.
- W4200459870 hasRelatedWork W3174463126 @default.
- W4200459870 hasRelatedWork W4200100536 @default.
- W4200459870 hasRelatedWork W4210794429 @default.
- W4200459870 hasRelatedWork W4283732135 @default.
- W4200459870 hasRelatedWork W4385743487 @default.
- W4200459870 hasVolume "13" @default.
- W4200459870 isParatext "false" @default.
- W4200459870 isRetracted "false" @default.
- W4200459870 workType "article" @default.