Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200464772> ?p ?o ?g. }
- W4200464772 endingPage "105137" @default.
- W4200464772 startingPage "105137" @default.
- W4200464772 abstract "The present study is related to solve the nonlinear dynamics of a smoke model using artificial neural networks (ANNs) under the optimization procedures of global heuristic and local search scheme. The genetic algorithm (GA) and sequential quadratic programming (SQP), i.e., GA-SQP used as global–local search approaches. The smoke nonlinear medical model depends upon four categories named as potential smokers, temporary smokers, smokers and permanent smokers. For solving these categories of the smoke system, an error based objective function is designed using these nonlinear equations and the initial conditions of the model. The performance through optimization of the objective function is testified using the ANNs and the hybrid combination of the GA-SQP for solving the nonlinear dynamics of the smoke system. To check the perfection of the proposed stochastic approach, the obtained results through the hybrid of GA-SQP are compared with the Adams scheme. Moreover, the designed scheme through statistical performances using different operators authenticates the reliability and stability to solve the nonlinear smoke model." @default.
- W4200464772 created "2021-12-31" @default.
- W4200464772 creator A5007351796 @default.
- W4200464772 creator A5020317036 @default.
- W4200464772 creator A5021969814 @default.
- W4200464772 creator A5071633474 @default.
- W4200464772 creator A5077047284 @default.
- W4200464772 date "2022-01-01" @default.
- W4200464772 modified "2023-10-01" @default.
- W4200464772 title "An advanced heuristic approach for a nonlinear mathematical based medical smoking model" @default.
- W4200464772 cites W2128116160 @default.
- W4200464772 cites W2157603088 @default.
- W4200464772 cites W2519188502 @default.
- W4200464772 cites W2740547486 @default.
- W4200464772 cites W2766708656 @default.
- W4200464772 cites W2788108700 @default.
- W4200464772 cites W2789515803 @default.
- W4200464772 cites W2793678410 @default.
- W4200464772 cites W2805085159 @default.
- W4200464772 cites W2887494545 @default.
- W4200464772 cites W2890106249 @default.
- W4200464772 cites W2899901712 @default.
- W4200464772 cites W2901421269 @default.
- W4200464772 cites W2903754912 @default.
- W4200464772 cites W2906166631 @default.
- W4200464772 cites W2908497760 @default.
- W4200464772 cites W2921350794 @default.
- W4200464772 cites W2943309695 @default.
- W4200464772 cites W2943421318 @default.
- W4200464772 cites W2949735065 @default.
- W4200464772 cites W2954110777 @default.
- W4200464772 cites W2954628428 @default.
- W4200464772 cites W2971614427 @default.
- W4200464772 cites W3000735178 @default.
- W4200464772 cites W3020127197 @default.
- W4200464772 cites W3020872498 @default.
- W4200464772 cites W3021407753 @default.
- W4200464772 cites W3026764435 @default.
- W4200464772 cites W3033468301 @default.
- W4200464772 cites W3038344063 @default.
- W4200464772 cites W3040620092 @default.
- W4200464772 cites W3040738612 @default.
- W4200464772 cites W3041611140 @default.
- W4200464772 cites W3047107856 @default.
- W4200464772 cites W3081161473 @default.
- W4200464772 cites W3089074983 @default.
- W4200464772 cites W3091623062 @default.
- W4200464772 cites W3095474933 @default.
- W4200464772 cites W3096665853 @default.
- W4200464772 cites W3105045451 @default.
- W4200464772 cites W3109338709 @default.
- W4200464772 cites W3205256555 @default.
- W4200464772 cites W3216193118 @default.
- W4200464772 doi "https://doi.org/10.1016/j.rinp.2021.105137" @default.
- W4200464772 hasPublicationYear "2022" @default.
- W4200464772 type Work @default.
- W4200464772 citedByCount "23" @default.
- W4200464772 countsByYear W42004647722022 @default.
- W4200464772 countsByYear W42004647722023 @default.
- W4200464772 crossrefType "journal-article" @default.
- W4200464772 hasAuthorship W4200464772A5007351796 @default.
- W4200464772 hasAuthorship W4200464772A5020317036 @default.
- W4200464772 hasAuthorship W4200464772A5021969814 @default.
- W4200464772 hasAuthorship W4200464772A5071633474 @default.
- W4200464772 hasAuthorship W4200464772A5077047284 @default.
- W4200464772 hasBestOaLocation W42004647721 @default.
- W4200464772 hasConcept C115527620 @default.
- W4200464772 hasConcept C121332964 @default.
- W4200464772 hasConcept C126255220 @default.
- W4200464772 hasConcept C154945302 @default.
- W4200464772 hasConcept C158622935 @default.
- W4200464772 hasConcept C173801870 @default.
- W4200464772 hasConcept C198927703 @default.
- W4200464772 hasConcept C33923547 @default.
- W4200464772 hasConcept C41008148 @default.
- W4200464772 hasConcept C50644808 @default.
- W4200464772 hasConcept C62520636 @default.
- W4200464772 hasConcept C81845259 @default.
- W4200464772 hasConcept C8880873 @default.
- W4200464772 hasConceptScore W4200464772C115527620 @default.
- W4200464772 hasConceptScore W4200464772C121332964 @default.
- W4200464772 hasConceptScore W4200464772C126255220 @default.
- W4200464772 hasConceptScore W4200464772C154945302 @default.
- W4200464772 hasConceptScore W4200464772C158622935 @default.
- W4200464772 hasConceptScore W4200464772C173801870 @default.
- W4200464772 hasConceptScore W4200464772C198927703 @default.
- W4200464772 hasConceptScore W4200464772C33923547 @default.
- W4200464772 hasConceptScore W4200464772C41008148 @default.
- W4200464772 hasConceptScore W4200464772C50644808 @default.
- W4200464772 hasConceptScore W4200464772C62520636 @default.
- W4200464772 hasConceptScore W4200464772C81845259 @default.
- W4200464772 hasConceptScore W4200464772C8880873 @default.
- W4200464772 hasLocation W42004647721 @default.
- W4200464772 hasLocation W42004647722 @default.
- W4200464772 hasOpenAccess W4200464772 @default.
- W4200464772 hasPrimaryLocation W42004647721 @default.
- W4200464772 hasRelatedWork W1968991653 @default.
- W4200464772 hasRelatedWork W1999891226 @default.