Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200467477> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4200467477 abstract "<sec> <title>BACKGROUND</title> Similarity-based machine-learning methodologies are suitable for personalized prediction and recommendation research, which is actively applied in healthcare field along with the generalization of EHR data. In particular, the similarity learning model which carefully reflects age can be efficiently used in predicting chronic diseases, closely related to ageing. </sec> <sec> <title>OBJECTIVE</title> We aimed to design a similarity model for patients in different age-groups in order to predict the two major chronic diseases: Diabetes and Hypertension. </sec> <sec> <title>METHODS</title> We developed an idea about learning the overlapping periods of two individuals by moving the viewpoint of them to future and past respectively. From this idea, we build separated similarity learning models through three sequential age-group intervals; 30-40, 40-50, 50-60 age-groups intervals. Each model has same structure based on deep neural network. For similarity learning, we set several demographic/bi-annual check-up information and diagnosis records as input features and disease based yes-or-no similarity labels as output features. </sec> <sec> <title>RESULTS</title> As a result of applying hypertension patients’ pair, diabetes patients’ pair, and non-diabetes/diabetes patient pair to our methodology, the similarity value was very high, close to 1 in the former two cases, and the similarity value was low, close to zero, in the last case. This proves that similarity learning appropriately reflects the disease status between individuals. In addition, we tried to find out how the conventional single-timepoint methodology and our methodology differ in the measurement of similarity for several special cases in which the patient's disease condition changes. As a result, it was found that the similarity results between the existing methodology and our methodology differ from at least 0.2 to at most 0.9 in four special cases where the patient's condition changes. This suggests that our methodology responds more sensitively to the patient's condition changing over time and can be applied more efficiently to disease prediction in those cases. </sec> <sec> <title>CONCLUSIONS</title> We developed an age-sensitive similarity learning model for personalized prediction of chronic diseases targeting Koreans. As a result, for the cases that patient's disease pattern changes, by designing and learning a deep similarity learning model using divided age groups which has not been previously attempted, we have shown that similarity learning results are better than conventional single-timepoint methodology. Moreover, we proposed the possibility of overcoming data shortage limitations that occur frequently in medical datasets through a similarity learning model considering patients’ age differences. </sec>" @default.
- W4200467477 created "2021-12-31" @default.
- W4200467477 creator A5005103838 @default.
- W4200467477 creator A5029749007 @default.
- W4200467477 date "2021-12-09" @default.
- W4200467477 modified "2023-09-30" @default.
- W4200467477 title "Similarity Learning between Patients with Large Age-Gap: Model Development and Validation Study (Preprint)" @default.
- W4200467477 cites W1498305593 @default.
- W4200467477 cites W2021354639 @default.
- W4200467477 cites W2062883667 @default.
- W4200467477 cites W2092068607 @default.
- W4200467477 cites W2095569536 @default.
- W4200467477 cites W2125757918 @default.
- W4200467477 cites W2167725992 @default.
- W4200467477 cites W236448318 @default.
- W4200467477 cites W2510940142 @default.
- W4200467477 cites W2511852057 @default.
- W4200467477 cites W2623881437 @default.
- W4200467477 cites W2772905286 @default.
- W4200467477 cites W2886951144 @default.
- W4200467477 cites W2891042696 @default.
- W4200467477 cites W3127985875 @default.
- W4200467477 cites W4256655784 @default.
- W4200467477 cites W1958522516 @default.
- W4200467477 doi "https://doi.org/10.2196/preprints.35575" @default.
- W4200467477 hasPublicationYear "2021" @default.
- W4200467477 type Work @default.
- W4200467477 citedByCount "0" @default.
- W4200467477 crossrefType "posted-content" @default.
- W4200467477 hasAuthorship W4200467477A5005103838 @default.
- W4200467477 hasAuthorship W4200467477A5029749007 @default.
- W4200467477 hasConcept C103278499 @default.
- W4200467477 hasConcept C108583219 @default.
- W4200467477 hasConcept C115961682 @default.
- W4200467477 hasConcept C119857082 @default.
- W4200467477 hasConcept C134018914 @default.
- W4200467477 hasConcept C134306372 @default.
- W4200467477 hasConcept C136764020 @default.
- W4200467477 hasConcept C154945302 @default.
- W4200467477 hasConcept C177148314 @default.
- W4200467477 hasConcept C177264268 @default.
- W4200467477 hasConcept C199360897 @default.
- W4200467477 hasConcept C2776291640 @default.
- W4200467477 hasConcept C33923547 @default.
- W4200467477 hasConcept C41008148 @default.
- W4200467477 hasConcept C43169469 @default.
- W4200467477 hasConcept C50644808 @default.
- W4200467477 hasConcept C555293320 @default.
- W4200467477 hasConcept C71924100 @default.
- W4200467477 hasConceptScore W4200467477C103278499 @default.
- W4200467477 hasConceptScore W4200467477C108583219 @default.
- W4200467477 hasConceptScore W4200467477C115961682 @default.
- W4200467477 hasConceptScore W4200467477C119857082 @default.
- W4200467477 hasConceptScore W4200467477C134018914 @default.
- W4200467477 hasConceptScore W4200467477C134306372 @default.
- W4200467477 hasConceptScore W4200467477C136764020 @default.
- W4200467477 hasConceptScore W4200467477C154945302 @default.
- W4200467477 hasConceptScore W4200467477C177148314 @default.
- W4200467477 hasConceptScore W4200467477C177264268 @default.
- W4200467477 hasConceptScore W4200467477C199360897 @default.
- W4200467477 hasConceptScore W4200467477C2776291640 @default.
- W4200467477 hasConceptScore W4200467477C33923547 @default.
- W4200467477 hasConceptScore W4200467477C41008148 @default.
- W4200467477 hasConceptScore W4200467477C43169469 @default.
- W4200467477 hasConceptScore W4200467477C50644808 @default.
- W4200467477 hasConceptScore W4200467477C555293320 @default.
- W4200467477 hasConceptScore W4200467477C71924100 @default.
- W4200467477 hasLocation W42004674771 @default.
- W4200467477 hasOpenAccess W4200467477 @default.
- W4200467477 hasPrimaryLocation W42004674771 @default.
- W4200467477 hasRelatedWork W1140107 @default.
- W4200467477 hasRelatedWork W1243554 @default.
- W4200467477 hasRelatedWork W12471134 @default.
- W4200467477 hasRelatedWork W149980 @default.
- W4200467477 hasRelatedWork W412939 @default.
- W4200467477 hasRelatedWork W534911 @default.
- W4200467477 hasRelatedWork W605621 @default.
- W4200467477 hasRelatedWork W6906542 @default.
- W4200467477 hasRelatedWork W7003 @default.
- W4200467477 hasRelatedWork W1061495 @default.
- W4200467477 isParatext "false" @default.
- W4200467477 isRetracted "false" @default.
- W4200467477 workType "article" @default.