Matches in SemOpenAlex for { <https://semopenalex.org/work/W4200468450> ?p ?o ?g. }
- W4200468450 endingPage "11" @default.
- W4200468450 startingPage "1" @default.
- W4200468450 abstract "Nowadays, the whole world is facing a pandemic situation in the form of coronavirus diseases (COVID-19). In connection with the spread of COVID-19 confirmed cases and deaths, various researchers have analysed the impact of temperature and humidity on the spread of coronavirus. In this paper, a deep transfer learning-based exhaustive analysis is performed by evaluating the influence of different weather factors, including temperature, sunlight hours, and humidity. To perform all the experiments, two data sets are used: one is taken from Kaggle consists of official COVID-19 case reports and another data set is related to weather. Moreover, COVID-19 data are also tested and validated using deep transfer learning models. From the experimental results, it is shown that the temperature, the wind speed, and the sunlight hours make a significant impact on COVID-19 cases and deaths. However, it is shown that the humidity does not affect coronavirus cases significantly. It is concluded that the convolutional neural network performs better than the competitive model." @default.
- W4200468450 created "2021-12-31" @default.
- W4200468450 creator A5001063749 @default.
- W4200468450 creator A5018904949 @default.
- W4200468450 creator A5026977991 @default.
- W4200468450 creator A5029433095 @default.
- W4200468450 creator A5029625696 @default.
- W4200468450 creator A5037586733 @default.
- W4200468450 creator A5066295998 @default.
- W4200468450 creator A5074498692 @default.
- W4200468450 creator A5082956031 @default.
- W4200468450 date "2021-12-06" @default.
- W4200468450 modified "2023-10-18" @default.
- W4200468450 title "Impact of Weather Predictions on COVID-19 Infection Rate by Using Deep Learning Models" @default.
- W4200468450 cites W2940914354 @default.
- W4200468450 cites W2991152680 @default.
- W4200468450 cites W3000372470 @default.
- W4200468450 cites W3001897055 @default.
- W4200468450 cites W3003617865 @default.
- W4200468450 cites W3012434404 @default.
- W4200468450 cites W3016540417 @default.
- W4200468450 cites W3016966855 @default.
- W4200468450 cites W3017468735 @default.
- W4200468450 cites W3019283372 @default.
- W4200468450 cites W3021654843 @default.
- W4200468450 cites W3021727730 @default.
- W4200468450 cites W3022479199 @default.
- W4200468450 cites W3023402713 @default.
- W4200468450 cites W3026609628 @default.
- W4200468450 cites W3027877630 @default.
- W4200468450 cites W3028602093 @default.
- W4200468450 cites W3030109869 @default.
- W4200468450 cites W3033099837 @default.
- W4200468450 cites W3033625591 @default.
- W4200468450 cites W3041576741 @default.
- W4200468450 cites W3042070269 @default.
- W4200468450 cites W3042753240 @default.
- W4200468450 cites W3082626321 @default.
- W4200468450 cites W3089843036 @default.
- W4200468450 cites W3098788022 @default.
- W4200468450 cites W3106076204 @default.
- W4200468450 cites W3107573364 @default.
- W4200468450 cites W3109495579 @default.
- W4200468450 cites W3115540055 @default.
- W4200468450 cites W3116431645 @default.
- W4200468450 cites W3118061136 @default.
- W4200468450 cites W3118280815 @default.
- W4200468450 cites W3120987772 @default.
- W4200468450 cites W3128235422 @default.
- W4200468450 cites W3132227677 @default.
- W4200468450 cites W3134784106 @default.
- W4200468450 cites W3159283251 @default.
- W4200468450 cites W3117665726 @default.
- W4200468450 doi "https://doi.org/10.1155/2021/5520663" @default.
- W4200468450 hasPublicationYear "2021" @default.
- W4200468450 type Work @default.
- W4200468450 citedByCount "5" @default.
- W4200468450 countsByYear W42004684502022 @default.
- W4200468450 countsByYear W42004684502023 @default.
- W4200468450 crossrefType "journal-article" @default.
- W4200468450 hasAuthorship W4200468450A5001063749 @default.
- W4200468450 hasAuthorship W4200468450A5018904949 @default.
- W4200468450 hasAuthorship W4200468450A5026977991 @default.
- W4200468450 hasAuthorship W4200468450A5029433095 @default.
- W4200468450 hasAuthorship W4200468450A5029625696 @default.
- W4200468450 hasAuthorship W4200468450A5037586733 @default.
- W4200468450 hasAuthorship W4200468450A5066295998 @default.
- W4200468450 hasAuthorship W4200468450A5074498692 @default.
- W4200468450 hasAuthorship W4200468450A5082956031 @default.
- W4200468450 hasBestOaLocation W42004684501 @default.
- W4200468450 hasConcept C108583219 @default.
- W4200468450 hasConcept C116675565 @default.
- W4200468450 hasConcept C121332964 @default.
- W4200468450 hasConcept C1276947 @default.
- W4200468450 hasConcept C142724271 @default.
- W4200468450 hasConcept C150899416 @default.
- W4200468450 hasConcept C151420433 @default.
- W4200468450 hasConcept C153294291 @default.
- W4200468450 hasConcept C154945302 @default.
- W4200468450 hasConcept C159047783 @default.
- W4200468450 hasConcept C161067210 @default.
- W4200468450 hasConcept C170853661 @default.
- W4200468450 hasConcept C205649164 @default.
- W4200468450 hasConcept C2777648638 @default.
- W4200468450 hasConcept C2779134260 @default.
- W4200468450 hasConcept C3006700255 @default.
- W4200468450 hasConcept C3007834351 @default.
- W4200468450 hasConcept C3008058167 @default.
- W4200468450 hasConcept C39432304 @default.
- W4200468450 hasConcept C41008148 @default.
- W4200468450 hasConcept C50644808 @default.
- W4200468450 hasConcept C524204448 @default.
- W4200468450 hasConcept C58489278 @default.
- W4200468450 hasConcept C71924100 @default.
- W4200468450 hasConcept C81363708 @default.
- W4200468450 hasConcept C91586092 @default.
- W4200468450 hasConceptScore W4200468450C108583219 @default.
- W4200468450 hasConceptScore W4200468450C116675565 @default.